| 1+x | 1 | 1+x | 1 | 2 | ||||||||||||
f(x)=ln( | )= | *( | )'= | * | = | |||||||||||
| 1−x |
| 1−x | (x2−1) | (1−x)2 |
| 2 | ||
| (x2−1)2 |
| 2 | 0(x2−1)2−2[2(x2−1)*2x] | |||
f''(x)=( | )'= | = | ||
| (x2−1)2 | [(x2−1)]2 |
| −2[4x(x2−1)] | ||
(i dalej nie wiem) | ||
| [(x2−1)2]2 |
| 4x | ||
Wynik tego przykładu powinien wyglądać | ||
| (1−x)2(1+x)2 |
| 7x3 | ||
f'(x)= | ||
| 2√x |
| 42x3−7x3 | 35x3 | 35x2 | ||||||||||||||
f''(x)= | = | = | = | ||||||||||||||
| 4x | 4x√x | 4x√x | 4√x |
| 35 | ||
A wynik powinien być | x√x | |
| 4 |