| −b + √b2 − 4ac | |
= x1
| |
| 2a |
| −b − √b2 − 4ac | |
= x2
| |
| 2a |
| 1 | 2a | |||
z1 = | = | |||
| x1 | −b + √b2 − 4ac |
| 1 | 2a | |||
z2 = | = | |||
| x2 | −b − √b2 − 4ac |
| −b | ||
z1 + z2 = | ||
| c |
| 2a | 2a | −b | |||
+ | = | ||||
| −b + √b2 − 4ac | −b − √b2 − 4ac | c |
| −2a | −2a | |||
L = | + | =
| ||
| b − √b2 − 4ac | b + √b2 − 4ac |
| −2a(b + √b2 − 4ac) − 2a(b − √b2 − 4ac) | ||
= | =
| |
| 4ac |
| −[(b + √b2 − 4ac) + (b − √b2 − 4ac)] | ||
= | =
| |
| 2c |
| −(2b) | −b | |||
= | = | = P
| ||
| 2c | c |
| 1 | 1 | x1+x2 | −ba | −b | ||||||
+ | = | = | = | |||||||
| x1 | x2 | x1*x2 | ca | c |
| 1 | 1 | 1 | a | ||||
* | = | = | |||||
| x1 | x2 | ca | c |
| 1 | 1 | −b | ||||
+ | = | |||||
| x1 | x2 | c |
| 1 | 1 | a | |||
* | = | ||||
| x1 | x2 | c |