wartosc
Johnny Five: Korzystajac z wlasnosci wartoci bezwzglednej, uzasadnij, ze wyrazenie
| | 2 | |
||x−2|−4|*||x−2|+4| * | |
| | przedstawia liczbe naturalna. Podaj konieczne |
| | x2 −4x −12 | |
zalozenia.
20 kwi 23:35
Basia:
x
2−4x−12≠0
po policzeniu Δ i pierwiastków bedzie
x≠−2 i x≠6
||x−2|−4|*||x−2|+4|=
| (|x−2|−4)(|x−2|+4) |=
| |x−2|
2−16 |=
| (x−2)
2−16 | =
| x
2−4x+4−16 |=
|x
2−4x−12|
stąd
| | |2| | |
wyrażenie = |x2−4x−12|* |
| =|2|=2 |
| | |x2−4x−12| | |
20 kwi 23:45
Jack: założenia: mianownik tego kolosa różny od 0.
skorzystaj z tego: a2−b2=(a−b)(a+b) oraz |a+b|2=(a+b)2
20 kwi 23:45