| √3n2−2n + √3n2−1 | ||
(√3n2−2n − √3n2−1)* | = | |
| √3n2−2n + √3n2−1 |
| 3n2−2n − 3n2 + 1 | ||
= | = | |
| √3n2−2n + √3n2−1 |
| −2n+1 | ||
= | = | |
| n*√3−2n +n* √3−1n |
| n(−2+1n) | ||
= | ||
| n(√3−2n+√3−1n) |
| n(−2+1n) | −2 | 1 | √3 | |||||
lim | = | = − | = − | |||||
| n(√3−2n+√3−1n) | 2√3 | √3 | 3 |
| (√3n2−2n−√3n2−1)(√3n2−2n +√3n2−1) | ||
an= | =
| |
| √3n2−2n+√3n2−1 |
| 3n2−2n −(3n2−1) | ||
= | =
| |
| n(√3−2n+√3−1n) |
| 3n2−2n −3n2+1 | ||
= | =
| |
| n(√3−2n+√3−1n) |
| n( −2+1n) | ||
= | ||
| n(√3−2n+√3−1n) |
| −2 | −2 | −1 | √3 | |||||
liman = | = | = | = − | |||||
| √3+√3 | 2√3 | √3 | 3 |