Δ OBW −− jest połówką trójkąta równobocznego o boku długości "l"
więc:
| 1 | ||
H= | l
| |
| 2 |
| l√3 | ||
r= | ||
| 2 |
| 1 | 1 | 3l2 | 1 | l3*π | ||||||
V= | πr2*H= | π* | * | l= | ||||||
| 3 | 3 | 4 | 2 | 8 |
| l3π | |
= 27π
| |
| 8 |
| 6√3 | ||
l=6 , H= 3 , r= | = 3√3
| |
| 2 |
α= 1200, V = 27π cm3, Pc = ? Pc = πr2 + πrl
| 1 | ||
V = | πr2h | |
| 3 |
| 1 | ||
πr2h = 27π | ||
| 3 |
| 1 | ||
r2h = 27 ⇒ r2h = 81 | ||
| 3 |
| r | α | |||
= tg | ||||
| h | 2 |
| r | ||
= tg600 | ||
| h |
| r | ||
= √3 ⇒ r = h√3 | ||
| h |
| r | α | |||
= sin | ||||
| l | 2 |
| 3√3 | √3 | |||
= | ||||
| l | 2 |