| 1 | 1 | |||
zapiszmy licznik inaczej: | *(2x−1)+ | |||
| 2 | 2 |
| 1 | 1 | ||
∫ | dx.
| ||
| 2 | (x−1/2)2+3/4 |
| 3 | ||
x−1/2=t*√ | ||
| 4 |
| √3 | ||
dx= | dt
| |
| 2 |
| 2x−1 | ||
(Przyda się... t= | )
| |
| √3 |
| 1 | √3/2* dt | 1 | √3 | 4 | 1 | ||||||
∫ | = | * | * | ∫ | dt=
| ||||||
| 2 | 3/4t2+3/4 | 2 | 2 | 3 | t2+1 |
| 2x−1 | ||
=arctg t+ C=arctg ( | ) +C
| |
| √3 |
| x+1 | ||
∫ | dx | |
| x2−x+1 |
| 1 | 3 | |||
zauważ że: x+1 = | (2x−1) + | , więc nasza całka wygląda teraz tak: | ||
| 2 | 2 |
| x+1 | ||
∫ | dx = | |
| x2−x+1 |
| 1 | 2x−1 | 3 | 1 | |||||
= | ∫ | dx + | ∫ | dx | ||||
| 2 | x2−x+1 | 2 | x2−x+1 |
| 2x−1 | dt | |||
∫ | dx = ∫ | = ln|t| = ln|x2−x+1| | ||
| x2−x+1 | t |
| 1 | 1 | ||||||||||||||||||
∫ | dx = ∫ | = | |||||||||||||||||
| x2−x+1 |
|
| 1 | 3 | |||
→ x− | = √ | t → obie strony różniczkujemy: | ||
| 2 | 4 |
| 3 | ||
→dx = √ | dt a całka wygląda tak: | |
| 4 |
| ||||||||||||||
= ∫ | = | |||||||||||||
|
| 1 | ||
korzystam z tego że znam pochodną na (arctgx) = | ||
| x2+1 |
| ||||||||||||||
a całka jest odwrotnością pochodnej więc ∫ | = | |||||||||||||
|
| 1 |
| |||||||||||||||||||||
= | arctg( | ) | ||||||||||||||||||||
|
|
| x+1 | ||
∫ | dx = | |
| x2−x+1 |
| 1 |
| ||||||||||||
= | ln|x2−x+1| + √3arctg( | ) + C | |||||||||||
| 2 |
|


x2−1/x−1
| x2−1 | (x+1)(x−1) | |||
∫ | dx= ∫ | dx=.... | ||
| x−1 | x−1 |