| 1 | 1 | √2 | ||||
Dane jest wyrażenie w = log | (x – 1) + log | (x + 1) − log | (7–x) | |||
| 2 | 2 | 2 |
| 1 | √2 | ||
, | − podstawy logarytmów | ||
| 2 | 2 |
| 1 | 1 | √2 | ||||
log | (x − 1) + log | (x+1) − log | (7 − x) = 1
| |||
| 2 | 2 | 2 |
| 1 |
| ||||||||||||||||||
log | (x − 1)(x + 1) − | = 1 (stosuję | |||||||||||||||||
| 2 |
|
| logbx | ||
podstawy logarytmu logax = | )
| |
| logba |
| 1 | √2 | 1 | 1 | 1 | 1 | √2 | ||||||||
log | = | , bo ( | ) | = √ | = | |||||||||
| 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 1 |
| ||||||||||||
log | (x − 1)(x + 1) − | = 1
| |||||||||||
| 2 |
|
| 1 | 1 | |||
log | (x − 1)(x + 1) − 2log | (7 − x) = 1
| ||
| 2 | 2 |
| 1 | 1 | |||
log | (x − 1)(x + 1) − log | (7 − x)2 = 1 (stosuję wzór na logarytm potęgi | ||
| 2 | 2 |
| 1 | (x − 1)(x + 1) | x | ||||
log | = 1 (stosuję wzór na logarytm ilorazu loga | = | ||||
| 2 | (7 − x)2 | y |
| (x − 1)(x + 1) | 1 | ||
= ( | )1 (opuszczam logarytmy stosując definicję logarytmu | ||
| (7 − x)2 | 2 |
| x2 − 1 | 1 | ||
= | |||
| (7 − x)2 | 2 |
| −b − √Δ | −14 − 20 | −34 | ||||
x1 = | = | = | = −17 − nie należy do D = (1, 7) − patrz | |||
| 2a | 2*1 | 2 |
| −b + √Δ | −14 + 20 | 6 | ||||
x2 = | = | = | = 3 − należy do D = (1, 7).
| |||
| 2a | 2*1 | 2 |