matematykaszkolna.pl
prosze o pomoc m: Wyznacz największą i najmniejszą wartość funkcji f(x)= x2−10x+9 w przedziale A=<3,7>
17 mar 16:01
Teta: Po pierwsze: sprawdzamy czy xw należy do tego przedziału
 −b 10 
xw=

=

= 5 −−− należy
 2a 2 
zatem , parabola ramionami skierowana do góry , więc dla xw= 5 f(x) osiaga minimum ymin=f(xw)= f(5) = 25−10*5+9= ....... dokończ policz : f(3)=..... i f(7)=....... i podaj ,która wartość jest większa
17 mar 16:06
la notte2: liczysz sobie q ze wzoru czyli q = delta4a a delta wychodzi 64 a q wychodzi −16 czyli nie należy do przedziału i liczysz warości an końcach przedziału czyli podstawiasz pod x =3 a później pod x=7 ( te liczby są z przedziału A,więc: f(3)=32 − 10*3 + 9 = −12 f(7)=72 − 10*7 + 9 = −12 i wychodzi, ze jest to jednocześnie najmniejsza i największa wartość emotka
17 mar 16:08
Teta: To bzdury emotka la notte2
17 mar 16:14
Jack: wystarczy policzyć współrzędną y wierzchołka paraboli i wartości na końcach przedziału. dalej to już tylko porównywanie trzech wyliczonych liczb (o ile współrzędna x wierzchołka paraboli należy do <3,7>. Jeśli nie należy, to porównujemy tylko punkty na krańcach przedziału).
17 mar 16:17
Jack: la notte2 pomyliło się chyba "q" z "p"...
17 mar 16:20