matematykaszkolna.pl
... wiktor: wiktor: okrąg o równaniu (x−1)2+(y−5)2=8 przecina oś OY w punktach A i B.Oblicz długość odcinka AB
16 mar 18:31
Wojciech: Jak przecina oś OY to x=0. Wstaw na chama i wylicz y1 i y2 i policz od nich odległość.
16 mar 18:48
Julek: Z = (0;Y) (x−1)2+(y−5)2=8 1 + y2 − 10y + 25 = 8 y2 − 10y +18 = 0 Δ = 100 − 72 = 28 Δ = 27
 10 − 27 
y1 =

= 5 − 7
 2 
 10 + 27 
y2 =

= 5 + 7
 2 
|AB| = y2 − y1 = 5 + 7 − 5 + 7 = 27
16 mar 19:02