c2=a2+b2−2a*b*cosγ
16=4+9−2*2*3*cosγ
16=13−12cosγ
12cosγ=−3
| 1 | ||
cosγ=− | ||
| 4 |
| 1 | ||
sinγ=√1− | ||
| 16 |
| √15 | ||
sinγ= | ||
| 4 |
| 1 | √15 | |||
PΔ= | *2*3* | = | ||
| 2 | 4 |
| 3√15 | ||
PΔ= | ||
| 4 |
| 2+3+4 | 9 | |||
PΔ=r*p p= | = | |||
| 2 | 2 |
| PΔ | ||
r= | ||
| p |
| 3√15 | 2 | |||
r= | * | |||
| 4 | 9 |
| √15 | ||
r= | ||
| 6 |
| √15 | ||
Obokrwp=2*π* | ||
| 6 |
| √15π | ||
Obokrwp= | ||
| 3 |
| c | |
=2R | |
| sinγ |
| 4 | ||
4* | =2R | |
| √15 |
| 16 | |
=2R | |
| √15 |
| 16 | 1 | |||
R= | * | |||
| √15 | 2 |
| 8 | 8√15 | |||
R= | = | |||
| √15 | 15 |
| 8√15 | ||
Obokrop=2π* | ||
| 15 |
| 16π√15 | ||
Obokrop= | ||
| 15 |
| 9 | ||
p= | − połowa obwodu Δ | |
| 2 |
| 3√15 | ||
PΔ= | ||
| 4 |
| 3√15 | 9 | ||
= | *r | ||
| 4 | 2 |
| √15 | ||
r= | ||
| 6 |
| π√15 | ||
l= | ||
| 3 |
| 3√15 | 2*3*4 | ||
= | |||
| 4 | 4R |
| 8 | ||
R= | ||
| √15 |
| 16π | ||
L= | ||
| √15 |