Basia:
ad.a
W(x)=x
4+9x
3+21x
2−x−30
W(1)=1+9+21−1−30=0
czyli W(x) jest podzielny przez x−1
dzielimy
x
4+9x
3+21x
2−x−30 : (x−1)=x
3+10x
2+31x+30
−x
4+x
3
−−−−−−−−−−−−−−−
10x
3+21x
2−x−30
−10x
3+10x
2
−−−−−−−−−−−−−−−−−−−−−−−
31x
2−x−30
−31x
2+31x
−−−−−−−−−−−−−−−−−−−−
30x−30
−30x+30
−−−−−−−−−−−−−−−−−−−
0
x
4+9x
3+21x
2−x−30=(x−1)(x
3+10x
2+31x+30)
P(x)=x
3+10x
2+31x+30
P(−3)=−27+90−93+30=0
czyli P(x) dzieli się przez x+3
dzielimy
x
3+10x
2+31x+30 : (x+3)=x
2+7x+10
−x
3−3x
2
−−−−−−−−−−−−−−−
7x
2+31x+30
−7x
2−21x
−−−−−−−−−−−−−−−−
10x+30
−10x−30
−−−−−−−−−−−−−−−−−
0
x
4+9x
3+21x
2−x−30=(x−1)(x+3)(x
2+7x+10)
x
2+7x+10=0
Δ=49−40=9
x
1=
−7−32=−5
x
2=
−7+32=−2
x
2+7x+10=(x+5)(x+2)
x
4+9x
3+21x
2−x−30=(x−1)(x+3)(x+5)(x+2)
narysuje teraz wykresy funkcji
y=x−1
y=x+3
y=x+5
y=x+2
poprowadź proste pomocnicze przez miejsca zerowe i określ znak iloczynu
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ad.b
x
4+6x
3+11x
2+18x+24 =
x
4+6x
3+8x
2+3x
2+18x+24 =
x
2(x
2+6x+8)+3(x
2+6x+8)=
(x
2+6x+8)(x
2+3)
x
2+3>0 ⇒
x
2+6x+8<0
Δ itd
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ad.c
4x
3−7x+3=
4x
3−4x−3x+3=
4x(x
2−1)−3(x−1)=
4x(x−1)(x+1)−3(x−1)=
(x−1)[4x(x+1)−1]=
(x−1)(4x
2+4x−1)
4x
2+4x−1=0
Δ=16+16=2*16
√Δ=4
√2
| | 1+√2 | | 1−√2 | |
4x3−7x+3=(x−1)(x− |
| )(x− |
| ) |
| | 2 | | 2 | |
dalej jak w zad.a