| cos(2t) + 1 | ||
i otrzymasz w drugiej całce ∫ 2*4cos2(t) dt = ∫ 8 | dt −−−> i z górki już masz | |
| 2 |
| x−3 | ||
x−3 = 2sin(t) −−−> t = arcsin( | ) | |
| 2 |
| t2+5 | ||
x = | ||
| t2+1 |
| t2+1+4 | ||
x = | ||
| t2+1 |
| 4 | ||
x = 1+ | ||
| t2+1 |
| 4 | ||
x − 1 = | ||
| t2+1 |
| 4t | ||
(x − 1)t = | ||
| t2+1 |
| 4t | ||
√(5−x)(x−1) = | ||
| t2+1 |
| 8 | t2−3 | |||
(−2x+4) = −2(x−1)+2 = − | +2 = 2 | |||
| t2+1 | t2+1 |
| t(t2−3) | ||
(−2x+4)√(5−x)(x−1) = 8 | ||
| (t2+1)2 |
| t2+5 | ||
x = | ||
| t2+1 |
| 2t(t2+1)−2t(t2+5) | ||
dx = | dt | |
| (t2+1)2 |
| 2t((t2+1)−(t2+5)) | ||
dx = | dt | |
| (t2+1)2 |
| −8t | ||
dx = | dt | |
| (t2+1)2 |
| t2(t2−3) | t4−3t2 | |||
−64∫ | dt = −64∫ | dt | ||
| (t2+1)4 | (t2+1)4 |
| ((t2+1)−1)2−3((t2+1)−1) | ||
=−64∫ | dt | |
| (t2+1)4 |
| (t2+1)2−2(t2+1)+1−3(t2+1)+3 | ||
=−64∫ | dt | |
| (t2+1)4 |
| (t2+1)2−5(t2+1)+4 | ||
=−64∫ | dt | |
| (t2+1)4 |
| 1 | 1 | 1 | ||||
=−64(4∫ | dt−5∫ | dt+∫ | dt) | |||
| (t2+1)4 | (t2+1)3 | (t2+1)2 |
| 1 | 1+t2−t2 | |||
∫ | dt = ∫ | dt | ||
| (t2+1)n | (t2+1)n |
| 1 | 1 | (−t) | ||||
∫ | dt = ∫ | dt+∫t | dt | |||
| (t2+1)n | (t2+1)n−1 | (t2+1)n |
| 1 | 1 | |||
∫ | dt = ∫ | dt+ | ||
| (t2+1)n | (t2+1)n−1 |
| 1 | t | 1 | 1 | ||||
( | − | ∫ | dt) | ||||
| 2n−2 | t2+1 | 2n−2 | (t2+1)n−1 |
| 1 | 1 | t | 2n−3 | 1 | |||||
∫ | dt = | + | ∫ | dt | |||||
| (t2+1)n | 2n−2 | t2+1 | 2n−2 | (t2+1)n−1 |
| 1 | t | 2n−3 | |||
In= | + | In−1 | |||
| 2n−2 | (t2+1)n−1 | 2n−2 |
| 1 | 1 | 1 | ||||
=−64(4∫ | dt−5∫ | dt+∫ | dt) | |||
| (t2+1)4 | (t2+1)3 | (t2+1)2 |
| 1 | t | ||
−64(4*( | + | ||
| 6 | (t2+1)3 |
| 5 | 1 | 1 | 1 | |||||
∫ | dt})−5∫ | dt+∫ | dt) | |||||
| 6 | (t2+1)3 | (t2+1)3 | (t2+1)2 |
| 2 | t | 5 | 1 | 1 | |||||
−64( | − | ∫ | dt+∫ | dt) | |||||
| 3 | (t2+1)3 | 3 | (t2+1)3 | (t2+1)2 |
| 2 | t | 5 | 1 | t | 3 | 1 | ||||||
−64( | − | ( | + | ∫ | dt)+ | |||||||
| 3 | (t2+1)3 | 3 | 4 | (t2+1)2 | 4 | (t2+1)2 |
| 1 | ||
∫ | dt)= | |
| (t2+1)2 |
| 2 | t | 5 | t | 1 | 1 | |||||
−64( | − | − | ∫ | dt) | ||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 4 | (t2+1)2 |
| 2 | t | 5 | t | 1 | 1 | t | |||||
−64( | − | − | ( | ||||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 4 | 2 | (t2+1) |
| 1 | 1 | |||
+ | ∫ | )dt) | ||
| 2 | t2+1 |
| 2 | t | 5 | t | 1 | t | 1 | |||||
−64( | − | − | − | arctg(t))+C | |||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 8 | (t2+1) | 8 |
| 1 | t | t | t | |||||
− | (128 | −80 | −24 | −24arctg(t))+C | ||||
| 3 | (t2+1)3 | (t2+1)2 | (t2+1) |
| 1 | −x2+6x−5 | |||
=− | (2x2−9x+1)√−x2+6x−5+8arctg( | )+C | ||
| 3 | x−1 |