| cos(2t) + 1 | ||
i otrzymasz w drugiej całce ∫ 2*4cos2(t) dt = ∫ 8 | dt −−−> i z górki już masz | |
| 2 |
| x−3 | ||
x−3 = 2sin(t) −−−> t = arcsin( | ) | |
| 2 |
| t2+5 | ||
x = | ||
| t2+1 |
| t2+1+4 | ||
x = | ||
| t2+1 |
| 4 | ||
x = 1+ | ||
| t2+1 |
| 4 | ||
x − 1 = | ||
| t2+1 |
| 4t | ||
(x − 1)t = | ||
| t2+1 |
| 4t | ||
√(5−x)(x−1) = | ||
| t2+1 |
| 8 | t2−3 | |||
(−2x+4) = −2(x−1)+2 = − | +2 = 2 | |||
| t2+1 | t2+1 |
| t(t2−3) | ||
(−2x+4)√(5−x)(x−1) = 8 | ||
| (t2+1)2 |
| t2+5 | ||
x = | ||
| t2+1 |
| 2t(t2+1)−2t(t2+5) | ||
dx = | dt | |
| (t2+1)2 |
| 2t((t2+1)−(t2+5)) | ||
dx = | dt | |
| (t2+1)2 |
| −8t | ||
dx = | dt | |
| (t2+1)2 |
| t2(t2−3) | t4−3t2 | |||
−64∫ | dt = −64∫ | dt | ||
| (t2+1)4 | (t2+1)4 |
| ((t2+1)−1)2−3((t2+1)−1) | ||
=−64∫ | dt | |
| (t2+1)4 |
| (t2+1)2−2(t2+1)+1−3(t2+1)+3 | ||
=−64∫ | dt | |
| (t2+1)4 |
| (t2+1)2−5(t2+1)+4 | ||
=−64∫ | dt | |
| (t2+1)4 |
| 1 | 1 | 1 | ||||
=−64(4∫ | dt−5∫ | dt+∫ | dt) | |||
| (t2+1)4 | (t2+1)3 | (t2+1)2 |
| 1 | 1+t2−t2 | |||
∫ | dt = ∫ | dt | ||
| (t2+1)n | (t2+1)n |
| 1 | 1 | (−t) | ||||
∫ | dt = ∫ | dt+∫t | dt | |||
| (t2+1)n | (t2+1)n−1 | (t2+1)n |
| 1 | 1 | |||
∫ | dt = ∫ | dt+ | ||
| (t2+1)n | (t2+1)n−1 |
| 1 | t | 1 | 1 | ||||
( | − | ∫ | dt) | ||||
| 2n−2 | t2+1 | 2n−2 | (t2+1)n−1 |
| 1 | 1 | t | 2n−3 | 1 | |||||
∫ | dt = | + | ∫ | dt | |||||
| (t2+1)n | 2n−2 | t2+1 | 2n−2 | (t2+1)n−1 |
| 1 | t | 2n−3 | |||
In= | + | In−1 | |||
| 2n−2 | (t2+1)n−1 | 2n−2 |
| 1 | 1 | 1 | ||||
=−64(4∫ | dt−5∫ | dt+∫ | dt) | |||
| (t2+1)4 | (t2+1)3 | (t2+1)2 |
| 1 | t | ||
−64(4*( | + | ||
| 6 | (t2+1)3 |
| 5 | 1 | 1 | 1 | |||||
∫ | dt})−5∫ | dt+∫ | dt) | |||||
| 6 | (t2+1)3 | (t2+1)3 | (t2+1)2 |
| 2 | t | 5 | 1 | 1 | |||||
−64( | − | ∫ | dt+∫ | dt) | |||||
| 3 | (t2+1)3 | 3 | (t2+1)3 | (t2+1)2 |
| 2 | t | 5 | 1 | t | 3 | 1 | ||||||
−64( | − | ( | + | ∫ | dt)+ | |||||||
| 3 | (t2+1)3 | 3 | 4 | (t2+1)2 | 4 | (t2+1)2 |
| 1 | ||
∫ | dt)= | |
| (t2+1)2 |
| 2 | t | 5 | t | 1 | 1 | |||||
−64( | − | − | ∫ | dt) | ||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 4 | (t2+1)2 |
| 2 | t | 5 | t | 1 | 1 | t | |||||
−64( | − | − | ( | ||||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 4 | 2 | (t2+1) |
| 1 | 1 | |||
+ | ∫ | )dt) | ||
| 2 | t2+1 |
| 2 | t | 5 | t | 1 | t | 1 | |||||
−64( | − | − | − | arctg(t))+C | |||||||
| 3 | (t2+1)3 | 12 | (t2+1)2 | 8 | (t2+1) | 8 |
| 1 | t | t | t | |||||
− | (128 | −80 | −24 | −24arctg(t))+C | ||||
| 3 | (t2+1)3 | (t2+1)2 | (t2+1) |
| 1 | −x2+6x−5 | |||
=− | (2x2−9x+1)√−x2+6x−5+8arctg( | )+C | ||
| 3 | x−1 |
| −2x+6 | ||
v = (−x2+4x+A), du = | dx | |
| 2√−x2+6x−5 |
| −x+3 | ||
v = (−x2+4x+A), du = | ||
| √−x2+6x−5 |
| (−x2+4x+A)(−x+3) | ||
∫(−2x+4)√(−x2+6x−5)dx = (−x2+4x+A)√−x2+6x−5 − ∫ | dx | |
| √−x2+6x−5 |
| 1 | (2x3−16x2+34x−20)−(−2x2+12x−10)+16 | ||
∫ | |||
| 2 | √−x2+6x−5 |
| 1 | ||
∫(−2x+4)√(−x2+6x−5)dx = (−x2+4x+1)√−x2+6x−5− | ∫(−2x+4)√(−x2+6x−5)dx | |
| 2 |
| 1 | ||
+∫√(−x2+6x−5)dx−8∫ | dx | |
| √−x2+6x−5 |
| 3 | |
∫(−2x+4)√(−x2+6x−5)dx = (−x2+4x+1)√−x2+6x−5 + ∫√(−x2+6x−5)dx − | |
| 2 |
| 1 | ||
8∫ | dx | |
| √−x2+6x−5 |
| (x+A)(−x+3) | ||
∫√(−x2+6x−5)dx = (x+A)√−x2+6x−5−∫ | dx | |
| √−x2+6x−5 |
| (x−3)(3−x) | ||
∫√(−x2+6x−5)dx = (x−3)√−x2+6x−5−∫ | dx | |
| √−x2+6x−5 |
| −x2+6x−5−4 | ||
∫√(−x2+6x−5)dx = (x−3)√−x2+6x−5−∫ | ||
| √−x2+6x−5 |
| 1 | ||
∫√(−x2+6x−5)dx = (x−3)√−x2+6x−5−∫√−x2+6x−5dx + 4∫ | dx | |
| √−x2+6x−5 |
| 1 | ||
2∫√(−x2+6x−5)dx = (x−3)√−x2+6x−5+4∫ | dx | |
| √−x2+6x−5 |
| 1 | 1 | |||
∫√(−x2+6x−5)dx = | (x−3)√−x2+6x−5+2∫ | dx | ||
| 2 | √−x2+6x−5 |
| 3 | 1 | ||
∫(−2x+4)√(−x2+6x−5)dx = (−x2+4x+1)√−x2+6x−5+ | (x−3)√−x2+6x−5 | ||
| 2 | 2 |
| 1 | 1 | |||
+2∫ | dx−8∫ | dx | ||
| √−x2+6x−5 | √−x2+6x−5 |
| 2 | 2 | 1 | |||
∫(−2x+4)√(−x2+6x−5)dx = | (−x2+4x+1)√−x2+6x−5+ | (x−3)√−x2+6x−5 | |||
| 3 | 3 | 2 |
| 2 | 1 | |||
− | 6∫ | dx | ||
| 3 | √4−(x−3)2 |
| 1 |
| |||||||||
= | (−2x2+8x+2+x−3)√−x2+6x−5−4∫ | dx | ||||||||
| 3 | √1−((x−3)/2)2 |
| 1 | ||
= | (−2x2+9x−1)√−x2+6x−5−4arcsin((x−3)/2)+C | |
| 3 |
| dv | ||
Dobranie odpowiedniej stałej całkowania podczas obliczania v z | ||
| dx |