| 5−3 | 1 | |||
t1= | = | ∊[0,1] | ||
| 4 | 2 |
| 5+3 | ||
t2= | =2∉[0,1] wiec to rozwiazanie odpada | |
| 4 |
| 1 | 1 | √2 | √2 | |||||
cos2x= | to 1o) cosx= | = | lub 2o) cosx=− | |||||
| 2 | √2 | 2 | 2 |
| √2 | ||
1o) cosx= | ||
| 2 |
| π | ||
cosx=cos | ||
| 4 |
| π | π | 7 | ||||
x1= | +2kπ lub x2=2π− | +2kπ = | π+2kπ i k∊Z | |||
| 4 | 4 | 4 |
| √2 | ||
2o) cosx=− | ||
| 2 |
| π | 3 | π | 5 | |||||
x3=π− | +2kπ= | π+2kπ lub x4=π+ | +2kπ= | π i k∊Z | ||||
| 4 | 4 | 4 | 4 |
| π | 3 | |||
x= | ,x= | π , | ||
| 4 | 4 |