| 1 | ||
Mamy funkcję f(x,t) = | ||
| √1−2xt+t2 |
| 1 | ||
f(x,t) = | ||
| (1−2xt+t2)1/2 |
| df | 1 | ||
= (− | )(1−2xt+t2)−3/2(−2x+2t) | ||
| dt | 2 |
| df | (x−t) | ||
= | |||
| dt | (1−2xt+t2)3/2 |
| d2f | −1 | 3 | |||
= | + (x − t)(− | )(1−2xt+t2)−5/2(−2x+2t) | |||
| dt2 | (1−2xt+t2)3/2 | 2 |
| d2f | −1 | 3(x − t)2 | |||
= | + | ||||
| dt2 | (1−2xt+t2)3/2 | (1−2xt+t2)5/2 |
| d3f | 3 | 3*2*(−1)*(x − t) | |||
= (−1)(− | )(1−2xt+t2)−5/2(−2x+2t)+ | ||||
| dt3 | 2 | (1−2xt+t2)5/2 |
| 5 | ||
+3(x − t)2*(− | )(1−2xt+t2)−7/2(−2x+2t) | |
| 2 |
| d3f | −9(x − t) | 15(x − t)3 | |||
= | + | ||||
| dt3 | (1−2xt+t2)5/2 | (1−2xt+t2)7/2 |
| d4f | −9*(−1) | 5 | |||
= | −9(x − t)(− | )(1−2xt+t2)−7/2(−2x+2t) | |||
| dt4 | (1−2xt+t2)5/2 | 2 |
| 7 | ||
+15*3*(−1)*(x − t)2(1−2xt+t2)−7/2+15(x − t)3(− | ) (1−2xt+t2)−9/2(−2x+2t) | |
| 2 |
| d4f | 9 | 90(x − t)2 | |||
= | − | ||||
| dt4 | (1−2xt+t2)5/2 | (1−2xt+t2)7/2 |
| 105(x − t)4 | ||
+ | ||
| (1−2xt+t2)9/2 |
| dn | 1 | ||
( | ) = | ||
| dtn | √1−2xt+t2 |
| an−2k(x − t)n−2k | ||
∑k=0[n/2] | ||
| (1−2xt+t2)n+1/2−k |