pr-stwo
Student:

Mając mapę pokoi. Na początku Wojtek znajduje się w pokoju S. Za każdym razem, z takim samym
prawdopodobieństwem, przechodzi do innego pokoju, sąsiadującego z obecnym. Jeśli dotrze do
pokoju W, od razu wygrywa. Z kolei jeśli dotrze do pokoju P, od razu przegrywa. Poza tym,
przemieszcza się, dopóki nie wygra albo nie przegra. Jakie jest prawdopodobieństwo, że Wojtek
wygra?
27 lip 09:03
wredulus_pospolitus:
a czy Wojtek może wrócić do pokoju w którym już był ?
27 lip 10:46
Student : Nie wiem tego, ja bym założył że nie moze
27 lip 12:08
wredulus_pospolitus:
To jest zadanie stworzone przez jakiegoś studenta czy dostałeś na uczelni?
27 lip 13:40
wredulus_pospolitus:
Jeżeli nie może wrócić do pokoju w którym był to stwierdzenie: "Poza tym, przemieszcza się,
dopóki nie wygra albo nie przegra." nie ma sensu.
27 lip 13:41
wredulus_pospolitus:
Ale samo zadanie wtedy można rozwiązać
27 lip 13:41
wredulus_pospolitus:
Jeżeli jednak może przejść do innego pokoju to głównym problemem jest to, że przejście do
konkretnego pokoju z konkretnego miejsca zależy od tego gdzie się znajdujesz.
Natomiast jeżeli zrobisz, że to jest stałe i takie samo, to wtedy prawdopodobieństwo pozostania
w pokoju jest różne w zależności od tego gdzie się znajdujemy
27 lip 13:49
wredulus_pospolitus:
gdyby i jedno i drugie było jednakowe (co jest niemożliwe

) to wtedy można byłoby to zrobić
przy przyjęciu powracania do pokoi
27 lip 13:51
wredulus_pospolitus:
dlatego ponawiam pytanie −−− zadanie stworzone przez Ciebie / innego studenta ... czy z zajęć ?
27 lip 13:54
Student: Dopytałem może krążyć między pokojami, nawet w nieskończoność, dopóki nie trafi na W lub P
27 lip 17:37
Student: Mam do tego 5 odpowiedzi
a. 7/17
b. 8/17
c. 9/17
d. 10/17
e. 11/17
27 lip 17:57
wredulus_pospolitus:
skoro są konkretne odpowiedzi to ile wynosi 'p'
27 lip 19:59
Student : No nie wiem dlatego pytam
27 lip 21:50
wredulus_pospolitus: Student −−− kto to zadanie stworzył ?
27 lip 21:52
Student : No z zajęć a co z nim nie tak
27 lip 21:54