| 1 | ||
∫1√3√1+ | dx | |
| x2 |
| 1 | ||
t = | ||
| x |
| 1 | ||
dt = − | dx | |
| x2 |
| 1 | ||
dx = − | dt | |
| t2 |
| 1 | ||
∫1√3/3√1+t2(− | )dt | |
| t2 |
| √1+t2 | ||
∫√3/31 | dt | |
| t2 |
| 2u | ||
t = | ||
| u2 − 1 |
| 2(u2 − 1) − 2u*2u | ||
dt = | du | |
| (u2 − 1)2 |
| u2 + 1 | ||
dt =−2 | du | |
| (u2 − 1)2 |
| 2u2 − (u2 − 1) | ||
√1+t2 = ut − 1 = | ||
| u2 − 1 |
| u2 + 1 | ||
√1+t2 = | ||
| u2 − 1 |
| √1+t2 + 1 | ||
u = | ||
| t |
| √3 | √4/3+1 | |||
u( | ) = | = 2 + √3 | ||
| 3 | √1/3 |
| u2 + 1 | (u2−1)2 | u2+1 | ||||
∫2+√31+√2 | * | *(−2 | du | |||
| u2 − 1 | 4u2 | (u2−1)2 |
| 1 | (u2+1)2 | ||
∫1+√22+√3 | du | ||
| 2 | u2(u2 − 1) |
| 1 | (u2−1)2+4u2 | ||
∫1+√22+√3 | du= | ||
| 2 | u2(u2 − 1) |
| 1 | u2−1 | 1 | |||
∫1+√22+√3 | du + 2∫1+√22+√3 | du | |||
| 2 | u2 | u2−1 |
| √1+t2 | ||
∫√3/31 | dt | |
| t2 |
| √1+t2 | ||
∫√3/31 | dt | |
| t2 |
| √1+t2 | √1+t2 | |||
∫√3/31 | dt = − | |√3/31 − | ||
| t2 | t |
| 1 | ||
∫√3/31{− | }dt | |
| √1+t2 |
| √1+t2 | 1 | |||
∫√3/31 | dt = −√2+2 + ∫√3/31 | dt | ||
| t2 | √1+t2 |
| 1 | ||
Jeżeli całkę z ∫ | dt masz w tablicach to skorzystaj z wyniku | |
| √1+t2 |