matematykaszkolna.pl
Procent składany Mat: Pan Nowak w lutym 2004 roku wpłacił 5000 zl na 6−miesięczną lokatę o rocznym oprocentowaniu 4,4%. Wiedząc, że w 2004 roku banki zobowiązane były do potrącania 19−procentowego podatku od odsetek, oblicz, o jaką kwotę powiększył się stan konta pana Nowaka po upływie 6 miesięcy od momentu założenia lokaty Może ktoś napisać jak to rozwiązać korzystając ze wzoru na procent składany
 1 
Ja robiłam tak K0=5000 p=4,4 n=

 2 
30 kwi 09:27
30 kwi 09:32
Mat: A może ktoś tutaj napisać bo mi nie otwiera treści zadań na Brainly za darmo 😏
30 kwi 09:37
X: 5000zł * 4,4% =220 220:360dni =0,61 0,61 * 180 dni = 110zł 110 * 19% = 20,90 110 − 20,90 = 89,10 zł Odp. stan konta p. Nowaka powiększył się o 89,10zł
30 kwi 09:57
Mat: Ale chciałam ze wzoru na procent składany a tu chyba tak nie ma
30 kwi 10:00
Mat: Może ktoś pomóc napisać co robię źle?
30 kwi 11:25
wredulus_pospolitus: n = 1/2 ma reprezentować okres (pół roku) czy liczbę naliczonych odsetek w ciągu roku? Dopytuję, bo nie wiem jakie oznaczenia masz we wzorze (są różne wersje tego samego wzoru).
30 kwi 12:19
wredulus_pospolitus:
 p 
Kn = K*(1+

)*{n*t}
 n 
takie dane wrzucamy: K = 5'000 p = 4,4% n = 2 t = 0,5 I pamiętajmy o tym, aby jeszcze na koniec uwzględnić podatek Belki.
30 kwi 12:28
wredulus_pospolitus: poprawka wzoru:
 p 
Kn = K*(1+

)n*t emotka
 n 
30 kwi 12:28
Mat:
 p 
Korzystałam ze wzoru Kn=K0*(1+

)n K0 kapitał początkowy p% stopa procentowa
 100 
Taka sama w każdym okresie n liczba okresów kapitalizacji Co więc mam źle i dlaczego
30 kwi 12:45
wredulus_pospolitus: po pierwsze −−− jest to wzór na sytuację gdy n = liczba lat i zakłada się, że kapitalizację mamy raz do roku (na koniec roku). Związku z tym ten wzór nie oddaje sytuacji: mamy kapitalizację co pół roku (bo mamy 6−cio miesięczną lokatę) i okres w jakim trzymamy kasę to pół roku.
30 kwi 13:15
wredulus_pospolitus: Nie wiem skąd masz taki wzór −−− ale to nie jest OGÓLNY wzór
30 kwi 13:16
wredulus_pospolitus: Dobra ... widzę skąd −−− zauważ, że ISOTNE jest co oznaczają dane literki: W tym wzorze:
 p 
Kn = Ko*(1 +

)n
 100 
mamy:
 4.4 
p − procent DOPISYWANY (stopa procentowa) więc nie będzie to 4.4 tylko

w Twoim
 2 
przypadku n − ile razy dopisano odsetki więc jest liczba CAŁKOWITA ... w Twoim przypadku będzie to n = 1
30 kwi 13:22
wredulus_pospolitus: Dlatego lepiej (bezpieczniej) stosować ogólny wzór w ogólnej postaci:
 p p 
Kn = K0(1+

)n*t albo jak wolisz Kn = K0(1+

)n*t
 n 100*n 
gdzie: p −−− oprocentowanie w skali ROKU (do lewego wzoru wstawiamy w % czyli np. 4,4%, w drugim wpisujemy wartość oprocentowania np. 4,4) n −−− liczba kapitalizacji w skali roku t −−− liczba lat kapitalizacji
30 kwi 13:26
Mat: Dziękuję bardzo emotka
30 kwi 14:22