pierwsze co widzę:
| ⎧ | a+b = 7 | |
| ⎜ | c+d=7 | |
| ⎜ | x+e=7√2 | |
| ⎨ | f2=32+52 | |
| ⎜ | a2+c2=f2 | |
| ⎜ | 9=d2+x2−dx√2 | |
| ⎩ | 25=b2+e2−be√2 |
|BC|=|BD|+|DC|=7√2
|HD|*√2=|BD|, |DG|*√2=|DC|
| |HD| | |DG| | |||
ΔHDF∼ΔGDE → | = | |||
| 3 | 5 |
| |BD|/√2 | |DC|/√2 | |BD|*5 | |||
= | → |DC|= | ||||
| 3 | 5 | 3 |
| |BD|*5 | ||
|BD|+ | =7√2 | |
| 3 |
| 21√2 | ||
|BD|= | ||
| 8 |
Trójkąty BHD i ECD są podobne.
Trójkąty DHJ i DFG są przystające
tym samym: FD=DH=3
BC=7√2
DC=BC−x =7√2−x
| 5 | 7√2−x | ||
= | |||
| 3 | x |
| 21√2 | ||
x= | ||
| 8 |
y=7−x
ΔFKD∼ΔEJD
| x | 7−x | ||
= | |||
| 3 | 5 |
| 21 | ||
x= | ||
| 8 |
| 21√2 | ||
|BD|= | ||
| 8 |
To ja dorzucę tw. sinusów do rozwiązań
| x | 3 | ||
= | |||
| sinα | sin45 |
| 7√2−x | 5 | ||
= | |||
| sin(180−α | sin45 |
| 21√2 | ||
x = | ||
| 8 |