Rozwiąż równanie
mikson: cos(x/2) + cos(x) = 2sin(x)sin(x/2) + 1/2
9 kwi 21:32
miks:
cos(x)= 1−2sin
2(x/2) i sinx=2sin(x/2)cos(x/2)
cos(x/2)−2*2sin(x/2)cos(x/2)sin(x/2) +1−2sin
2(x/2)−1/2=0
| 1 | |
cos(x/2)[1−4sin2(x/2)] + |
| [1−4sin2(x/2)]=0 |
| 2 | |
| 1 | |
[1−4sin2(x/2)][cos(x/2)+ |
| ]=0 |
| 2 | |
dokończ............
9 kwi 21:45