4x−3 | ||
Natomiast całkę ∫ | dx | |
√x2+6x+5 |
t2 − 5 | ||
x = | ||
2t+6 |
t2+6t+5 | ||
t − x = | ||
2t+6 |
2t(2t+6)−2(t2−5) | ||
dx = | dt | |
(2t+6)2 |
t2+6t+5 | ||
dx = 2 | dt | |
(2t+6)2 |
4t2−20 | ||
4x − 3 = | − 3 | |
(2t+6) |
4t2 − 6t − 38 | ||
4x − 3 = | ||
(2t+6) |
4t2 − 6t − 38 | 2t+6 | t2+6t+5 | ||||
∫ | * | *2 | dt | |||
(2t+6) | t2+6t+5 | (2t+6)2 |
2t2−3t−19 | ||
=4∫ | dt | |
(2t+6)2 |
2t2−3t−19 | ||
=∫ | dt | |
(t+3)2 |
2t2+12t+18+(−15t−45)+8 | ||
=∫ | dt | |
(t+3)2 |
2(t+3)2−15(t+3)+8 | ||
=∫ | dt | |
(t+3)2 |
15 | 8 | |||
=∫(2 − | + | )dt | ||
t+3 | (t+3)2 |
8 | ||
=2(t+3) − | − 15ln|t+3|+C | |
t+3 |
(t+3)2−4 | ||
=2( | )− 15ln|t+3|+C | |
t+3 |
t2+6t+5 | ||
=2 | − 15ln|t+3|+C | |
t+3 |
4x−3 | 2x+6 | 1 | ||||
∫ | dx = 4∫ | dx − 15∫ | dx | |||
√x2+6x+5 | 2√x2+6x+5 | √x2+6x+5 |
1 | ||
i podstawienie Eulera zastosować tylko do całki ∫ | dx | |
√x2+6x+5 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |