| 4 | 2 | 26 | ||||
( | )2sin2x + ( | )4cos2x = | ||||
| 9 | 3 | 27 |
| 2 | 2 | 26 | ||||
( | )4sin2x + ( | )4cos2x = | ||||
| 3 | 3 | 27 |
| 2 | 2 | 26 | ||||
( | )4(1 − cos2x) + ( | )4cos2x = | ||||
| 3 | 3 | 27 |
| 2 | 2 | 2 | 26 | |||||
( | )4[( | )4cos2x]−1 + ( | )4cos2x = | |||||
| 3 | 3 | 3 | 27 |
| 2 | ||
kładąc ( | )4cos2x = t, dostajemy równanie: | |
| 3 |
| 2 | 1 | 26 | 8 | 2 | ||||||
( | )4 | + t = | ⇔ t = | ∨ t = | ||||||
| 3 | t | 27 | 27 | 3 |