sin x | 1 | |||
Wykąż że ∫0π/2 | dx= | arctg √2 | ||
√1+2sin2x | √2 |
sin(x) | ||
∫0π/2 | dx | |
√1+4sin(x)cos(x) |
sin(x) | ||
∫0π/2 | dx | |
cos(x)√1+tg2(x)+4tg(x) |
| ||||||||
∫0π/2 | dx | |||||||
√1+tg2(x)+4tg(x) |
tg(x) | ||
∫0π/2 | dx | |
√1+tg2(x)+4tg(x) |
t | 1 | ||
∫0∞ | dt | ||
1+t2 | √1+4t+t2 |
u2−1 | ||
t = | ||
2u+4 |
(u2−1)2 | ||
1+t2 = 1+ | ||
(2u+4)2 |
u4−2u2+1+4u2+16u+16 | ||
1+t2 = | ||
(2u+4)2 |
u4+2u2+16u+17 | ||
1+t2 = | ||
(2u+4)2 |
u2−1 | ||
√1+4t+t2 =u − | ||
2u+4 |
u2+4u+1 | ||
√1+4t+t2 = | ||
2u+4 |
2u(2u+4)−2(u2−1) | ||
dt = | du | |
(2u+4)2 |
4u2+8u−2u2+2 | ||
dt = | du | |
(2u+4)2 |
2u2+8u+2 | ||
dt = | du | |
(2u+4)2 |
u2+4u+1 | ||
dt = 2 | du | |
(2u+4)2 |
u2−1 | (2u+4)2 | 2u+4 | ||||
2∫1∞ | * | * | ||||
2u+4 | u4+2u2+16u+17 | u2+4u+1 |
u2+4u+1 | ||
* | du | |
(2u+4)2 |
u2−1 | ||
2∫1∞ | du | |
u4+2u2+16u+17 |
16 | ||
b−c = | ||
a |
16 | ||
2b = 2 + a2 + | ||
a |
16 | ||
2c = 2 + a2 − | ||
a |
16 | 16 | |||
(2 + a2 + | )(2 + a2 − | )=68 | ||
a | a |
16 | 16 | |||
(2 + a2 + | )(2 + a2 − | )−68=0 | ||
a | a |
256 | ||
(a4+4a2+4)− | −68 = 0 | |
a2 |
256 | ||
a4+4a2−64 − | = 0 | |
a2 |
1 | 16 | |||
b = | ( 2 + a2 + | ) | ||
2 | a |
1 | 16 | |||
c = | ( 2 + a2 − | ) | ||
2 | a |
1 | 16 | |||
b = | (2 + 8 + | ) | ||
2 | 2√2 |
1 | 16 | |||
c = | (2 + 8 − | ) | ||
2 | 2√2 |
1 | 16√2 | |||
b = | (10 + | ) | ||
2 | 4 |
1 | 16√2 | |||
c = | (10 − | ) | ||
2 | 4 |
1 | ||
b = | (10 + 4√2) | |
2 |
1 | ||
c = | (10 − 4√2) | |
2 |
u2−1 | ||
2∫1∞ | du | |
u4+2u2+16u+17 |
u2−1 | ||
2∫1∞ | du | |
(u2 − 2√2u + 5+2√2)(u2 + 2√2u + 5−2√2) |
u2−1 | ||
2 | = | |
(u2 − 2√2u + 5+2√2)(u2 + 2√2u + 5−2√2) |
Au+B | Cu+D | ||
+ | |||
u2 − 2√2u + 5+2√2 | u2 + 2√2u + 5−2√2 |
√2 | ||
A = | ||
4 |
√2 | ||
B = | ||
4 |
√2 | u+1 | √2 | u+1 | ||||
∫ | du− | ∫ | du | ||||
4 | u2 − 2√2u + 5+2√2 | 4 | u2 + 2√2u + 5−2√2 |
√2 | 2u+2 | √2 | 2u+2 | ||||
∫ | − | ∫ | du | ||||
8 | u2 − 2√2u + 5+2√2 | 8 | u2 + 2√2u + 5−2√2 |
√2 | 2u−2√2+2√2+2 | ||
∫ | du | ||
8 | u2 − 2√2u + 5+2√2 |
√2 | 2u+2√2+2−2√2 | |||
− | ∫ | du | ||
8 | u2 + 2√2u + 5−2√2 |
√2 | 2u−2√2 | √2 | |||
∫ | du+ | ∫U{√2+1}{(u − √2)2 + | |||
8 | u2 − 2√2u + 5+2√2 | 4 |
√2 | 2u+2√2 | √2 | ||||
− | ∫ | du+ | ∫U{√2−1}{(u + √2)2 + | |||
8 | u2 + 2√2u + 5−2√2 | 4 |
√2 | √2 | ||
ln(u2 − 2√2u + 5+2√2)− | ln(u2 + 2√2u + 5−2√2) | ||
8 | 8 |
√2 | u − √2 | √2 | u+√2 | |||||
+ | arctg( | )+ | arctan( | ) | ||||
4 | √2+1 | 4 | √2−1 |
√2 | u2 − 2√2u + 5+2√2 | ||
ln( | ) | ||
8 | u2 + 2√2u + 5−2√2 |
√2 | u − √2 | √2 | u+√2 | |||||
+ | arctg( | )+ | arctan( | ) | ||||
4 | √2+1 | 4 | √2−1 |
√2 | u2 − 2√2u + 5+2√2 | |||
= | ln(limu→∞ | }) | ||
8 | u2 + 2√2u + 5−2√2 |
√2 | 6 | √2 | π | 1−√2 | π | |||||||
− | ln( | )+ | ( | −arctg( | )+ | −a | ||||||
8 | 6 | 4 | 2 | 1+√2 | 2 |
1+√2 | ||
rctg( | )) | |
√2−1 |
√2 | 1+√2 | 1−√2 | |||
(arctg( | )−arctg( | )) | |||
4 | 1−√2 | 1+√2 |
√2 | π | π | |||
(( | +arctg(√2))−( | −arctg(√2))) | |||
4 | 4 | 4 |
√2 | ||
= | (2arctg(√2)) | |
4 |
√2 | ||
= | arctg(√2) | |
2 |
1 | ||
= | arctg(√2) | |
√2 |