ln(1+x2) | ||
Oblicz ∫ | dx | |
x |
ln(1+x2) | xln(1+x2) | |||
∫ | dx = | dx | ||
x | x2 |
dt | ||
xdx= | ||
2 |
ln(1+x2) | 1 | ln(t) | ||||
∫ | dx = | ∫ | dt | |||
x | 2 | t−1 |
ln(1+x2) | 1 | ln(t) | ||||
∫ | dx = − | ∫ | dt | |||
x | 2 | 1−t |
1 | ||
− | dilog(1+x2)+C | |
2 |
f(n)(0) | ||
f(x)=∑n=0∞ | xn | |
n! |
d | 1 | ||
ln(1+x) = | |||
dx | (1+x) |
d2 | −1 | ||
= | |||
dx2 | (1+x)2 |
d3 | (−1)*(−2) | ||
= | |||
dx3 | (1+x)3 |
d4 | (−1)*(−2)*(−3) | ||
= | |||
dx4 | (1+x)4 |
dn | (−1)n−1(n−1)! | ||
= | , n ≥ 1 | ||
dxn | (1+x)n |
f(n)(0) | ||
f(x)=∑n=0∞ | xn | |
n! |
f(n)(0) | ||
f(x)=ln(1) + ∑n=1∞ | xn | |
n! |
(−1)n−1(n−1)! | ||
f(x)=ln(1) + ∑n=1∞ | xn | |
n! |
(−1)n−1 | ||
f(x)=∑n=1∞ | xn | |
n |
(−1)n−1 | ||
g(x) = ∑n=1∞ | x2n−1 | |
n |
(−1)n−1 | 1 | ||
∑n=1∞ | x2n | ||
n | 2n |
1 | (−1)n | |||
− | (∑n=1∞ | x2n) | ||
2 | n2 |