| 1 | ||
Oblicz całke ∫ | dx | |
| x4√x2+1 |
| 1 | 1 | 1 | 1 | t3 | ||||||
∫ | = [t = | , x = | , dx = − | dt] = −∫ | dt = | |||||
| x4√x2 + 1 | x | t | t2 | √t2 + 1 |
| 1 | u − 1 | |||
= [u = t2 + 1, du = 2tdt, dt ] = − | ∫ | du = | ||
| 2 | √u |
| 1 | 1 | |||
= − | (∫√udu − ∫ | du) = ... | ||
| 2 | √u |
| 2t | ||
x = | ||
| 1−t2 |
| 2t2 | ||
xt+1 = | +1 | |
| 1−t2 |
| 2t2+1−t2 | ||
xt+1 = | ||
| 1−t2 |
| 1+t2 | ||
xt+1 = | ||
| 1−t2 |
| 2(1−t2)−2t(−2t) | ||
dx = | dt | |
| (1−t2)2 |
| 2 − 2t2 + 4t2 | ||
dx = | dt | |
| (1−t2)2 |
| 2+2t2 | ||
dx = | dt | |
| (1−t2)2 |
| 2(1+t2) | ||
dx = | dt | |
| (1−t2)2 |
| 1 | (1−t2)4 | 1−t2 | 2(1+t2) | |||
∫ | dx = ∫ | dt | ||||
| x4√x2+1 | 16t4 | 1+t2 | (1−t2)2 |
| 1 | (1−t2)3 | |||
= | ∫ | dt | ||
| 8 | t4 |
| 1 | 1 | 3 | ||||
= | ∫( | − | + 3 − t2) | |||
| 8 | t4 | t2 |
| 1 | ||
= | (∫t−4dt−3∫t−2dt + 3∫dt − ∫t2dt) | |
| 8 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||
= | (− | + | +3t − | t3)+C | ||||||
| 8 | 3 | t3 | 3 | t | 3 |
| 1 | 1 | 1 | 1 | |||||
= | (− | (t3+ | ) + 3(t+ | ))+C | ||||
| 8 | 3 | t3 | t |
| 1 | 1 | 1 | ||||
=− | ((t3+ | ) − 9(t+ | ))+C | |||
| 24 | t3 | t |
| 1 | 1 | 1 | 1 | |||||
=− | ((t3+ | ) +3(t+ | )− 12(t+ | ))+C | ||||
| 24 | t3 | t | t |
| 1 | 1 | 1 | ||||
=− | ((t+ | )3 − 12(t+ | ))+C | |||
| 24 | t | t |
| 1 | (t2+1)3 | 1 | t2+1 | |||
=− | + | +C | ||||
| 24 | t3 | 2 | t |
| 1 | (t2+1)3 | t2+1 | |||
=− | + | +C | |||
| 3 | (2t)3 | 2t |
| 2t | ||
x = | ||
| 1−t2 |
| 1+t2 | ||
√x2+1 = | ||
| 1−t2 |
| t2+1 | 1+t2 | 1−t2 | |||
= | * | ||||
| 2t | 1−t2 | 2t |
| t2+1 | √x2+1 | ||
= | |||
| 2t | x |
| 1 | √x2+1 | √x2+1 | ||||
= − | ( | )3 + | + C | |||
| 3 | x | x |
| (x2+1)√x2+1 | 3x2√x2+1 | |||
=− | + | +C | ||
| 3x3 | 3x3 |
| (3x2−x2−1)√x2+1 | ||
= | +C | |
| 3x3 |
| (2x2−1)√x2+1 | ||
= | +C | |
| 3x3 |
| 1 | 1+x2−x2 | |||
∫ | dx = ∫ | dx | ||
| x4√x2+1 | x4√x2+1 |
| 1 | √x2+1 | 1 | ||||
∫ | dx =∫ | dx − ∫ | dx | |||
| x4√x2+1 | x4 | x2√x2+1 |
| √x2+1 | 1 | |||
∫ | dx − ∫ | dx = | ||
| x4 | x2√x2+1 |
| √x2+1 | 1 | x | 1 | |||||
− | − ∫(− | )( | )dx− ∫ | dx | ||||
| 3x3 | 3x3 | √x2+1 | x2√x2+1 |
| √x2+1 | 1 | |||
∫ | dx − ∫ | dx = | ||
| x4 | x2√x2+1 |
| √x2+1 | 1 | 1 | 1 | |||||
− | + | ∫ | dx− ∫ | dx | ||||
| 3x3 | 3 | x2√x2+1 | x2√x2+1 |
| √x2+1 | 1 | √x2+1 | 2 | 1 | ||||||
∫ | dx − ∫ | dx =− | − | ∫ | dx | |||||
| x4 | x2√x2+1 | 3x3 | 3 | x2√x2+1 |
| 1 | 1+x2−x2 | |||
∫ | dx = ∫ | dx | ||
| x2√x2+1 | x2√x2+1 |
| 1 | √x2+1 | 1 | ||||
∫ | dx = ∫ | dx − ∫ | dx | |||
| x2√x2+1 | x2 | √x2+1 |
| 1 | √x2+1 | 1 | x | 1 | ||||||
∫ | dx = − | − ∫(− | )( | )dx − ∫ | dx | |||||
| x2√x2+1 | x | x | √x2+1 | √x2+1 |
| 1 | √x2+1 | 1 | 1 | |||||
∫ | dx = − | +∫ | dx−∫ | dx | ||||
| x2√x2+1 | x | √x2+1 | √x2+1 |
| 1 | √x2+1 | |||
∫ | dx = − | |||
| x2√x2+1 | x |
| 1 | √x2+1 | 2 | √x2+1 | |||||
∫ | dx =− | − | (− | )+C | ||||
| x4√x2+1 | 3x3 | 3 | x |
| 1 | √x2+1 | 2 | √x2+1 | |||||
∫ | dx =− | + | ( | )+C | ||||
| x4√x2+1 | 3x3 | 3 | x |
| 1 | (2x2−1)√x2+1 | |||
∫ | dx = | + C | ||
| x4√x2+1 | 3x3 |