cos(2x) | |
<1 | |
cos(x) |
1 | ||
cos(x)<0 dla x∊( | π,π) | |
2 |
1+3 | 1−3 | |||
2t2−t−1=0 Δ=9 t1= | =1(należy ) t2= | =−U{1}{ | ||
4 | 4 |
1 | ||
2cos2(x)−cos(x)−1=2(cosx−1)(cosx+ | ) | |
2 |
1 | 1 | 2 | ||||
2cos2(x)−cos(x)−1>0 gdy cos(x)+ | <0 cos(x)<− | x∊( | π,π) | |||
2 | 2 | 3 |
2 | ||
cos(x)<0 i 2cos2(x)−cos(x)−1>0 dla x∊( | π,π) | |
3 |
1 | ||
cos(x)>0 dla x∊(0, | π) | |
2 |
1 | 1 | 2 | ||||
2cos2(x)−cos(x)−1<0 gdy cosx+ | >0 cosx>− | x∊(0, | π) | |||
2 | 2 | 3 |
1 | ||
cos(x)>0 i 2cos2(x)−cos(x)−1<0 dla x∊(0, | π) | |
2 |
1 | 2 | |||
U{cos(2x)}{cos(x)<1 dla x∊(0, | π)U( | π,π) | ||
2 | 3 |