Korzystajac z wzoru Borela wyznacz funkcje ktorych transformaty dane sa wzorami
Koniek: Korzystajac z wzoru Borela wyznacz funkcje ktorych transformaty dane sa wzorami
Mariusz:
Z wzoru Borela ?
∫
0tf(τ)g(t−τ)dτ
∫
0te
τe
t−τdτ
∫
0te
tdτ
e
t∫
0tdτ
=te
t
∫
0tτe
τe
−2(t−τ)dτ
∫
0tτe
−2t+2τ+τdτ
∫
0tτe
−2t+3τdτ
e
−2t(∫
0tτe
3τdτ)
| 1 | | 1 | |
e−2t( |
| τe3τ|0t − |
| ∫0te3τdτ) |
| 3 | | 3 | |
| 1 | | 1 | |
e−2t( |
| te3t − |
| ∫0te3τdτ) |
| 3 | | 3 | |
| 1 | | 1 | |
e−2t( |
| te3t − |
| e3τ|0t) |
| 3 | | 9 | |
| 1 | | 1 | |
e−2t( |
| te3t − |
| (e3t − 1)) |
| 3 | | 9 | |
| 1 | | 1 | | 1 | |
e−2t( |
| te3t − |
| e3t + |
| ) |
| 3 | | 9 | | 9 | |
| 1 | | 1 | |
e−2t( |
| + |
| (3t−1)e3t) |
| 9 | | 9 | |
A teraz dla sprawdzenia rozłóżmy tę transformatę na sumę ułamków prostych
1 | | A | | B | | C | |
| = |
| + |
| + |
| |
(s−1)2(s+2) | | s−1 | | (s−1)2 | | s+2 | |
A(s−1)(s+2) + B(s+2)+C(s−1)
2 = 1
A(s
2+s−2)+B(s+2)+C(s
2−2s+1) = 1
A + C = 0
A+B−2C = 0
−2A+2B +C = 1
C = −A
3A+B = 0
−3A+2B = 1
C = −A
B = −3A
−9A = 1
1 | | 1 | 1 | | 1 | 1 | | 1 | 1 | |
| = − |
|
| + |
|
| + |
|
| |
(s−1)2(s+2) | | 9 | s−1 | | 3 | (s−1)2 | | 9 | s−(−2) | |
| 1 | | 1 | | 1 | |
f(t)= − |
| et+ |
| tet + |
| e−2t |
| 9 | | 3 | | 9 | |