| (−1)k | n |
| 1 | |||||||||||
∑k=0floor(n/2) | * | * | = | |||||||||||
| 4k | n−k | 2n−1 |
| dx | |
= −sin(t) | |
| dt |
| dx | |
= −1*(±√1−x2) | |
| dt |
| dy | dy | dx | |||
= | * | ||||
| dt | dx | dt |
| dy | dy | ||
= | *(−1*(±√1−x2)) | ||
| dt | dx |
| d2y | d | dy | |||
= | ( | ) | |||
| dt2 | dt | dt |
| d2y | d | dy | dx | dx | |||||
= | ( | * | )* | ||||||
| dt2 | dx | dx | dt | dt |
| d2y | d | dy | |||
= | ( | *(−1*(±√1−x2)))*(−1*(±√1−x2)) | |||
| dt2 | dx | dx |
| d2y | d | dy | |||
= √1−x2* | ( | *√1−x2) | |||
| dt2 | dx | dx |
| d2y | d2y | dy | (−x) | ||||
= √1−x2*( | *√1−x2 + | * | ) | ||||
| dt2 | dx2 | dx | √1−x2 |
| d2y | d2y | dy | |||
= (1 − x2) | − x | ||||
| dt2 | dx2 | dx |
| d2y | dy | |||
y''(t) + n2y(t) = (1 − x2) | − x | + n2y(x) | ||
| dx2 | dx |
| d2y | dy | |||
(1 − x2) | − x | + n2y(x) = 0 | ||
| dx2 | dx |
| (m+2)(m+1) | ||
cm = | cm+2 | |
| (m−n)(m+n) |
| m(m−1) | ||
cm − 2 = | cm | |
| (m−2−n)(m−2+n) |
| (m−2)(m−3)m(m−1) | ||
cm−4 = | cm | |
| (m−4−n)(m−2−n)(m−4+n)(m−2+n) |
| (m−4)(m−5)(m−2)(m−3)m(m−1) | ||
cm−6 = | cm | |
| (m−6−n)(m−4−n)(m−2−n)(m−6+n)(m−4+n)(m−2+n) |
| (m−2)(m−3)m(m−1)*..*(m−2k+2)(m−2k+1) | ||
| (m−2−n)(m−4−n)*..*(m−2k−n)(m−2+n)(m−4+n)*..*(m−2k+n) |
| m! | ||
cm−2k = | cm | |
| (m−2k)!(m−2−n)(m−4−n)*..*(m−2k−n)(m−2+n)(m−4+n)*..*(m−2k+n) |
| n! | ||
cn−2k = | cn | |
| (n−2k)!(−2)(−4)*...*(−2k)*(2n−2)*(2n−4)*...*(2n−2k) |
| n! | ||
cn−2k = | cn | |
| (n−2k)!*(−1)k*22k(1)(2)*...*(k)*(n−1)*(n−2)*...*(n−k+1)*(n−k) |
| n!*(−1)k | ||
cn−2k = | cn | |
| 22k*k!*(n−2k)!*(n−k)*(n−1)*(n−2)*...*(n−k+1) |
| n!*(−1)k*n*(n−k)! | ||
cn | ||
| 22k*k!*(n−2k)!*(n−k)*(n−1)*(n−2)*...*(n−k+1)*n*(n−k)! |
| n!*(−1)k*n*(n−k)! | ||
cn−2k = | cn | |
| 22k*k!*(n−2k)!*(n−k)*n! |
| (−1)k*n*(n−k)! | ||
cn−2k = | cn | |
| 22k*k!*(n−2k)!*(n−k) |
| (−1)k | n |
| ||||||||||
cn−2k = | * | * | *cn | |||||||||
| 22k | n−k |
| (−1)k | n |
| ||||||||||
cn−2k = | * | * | *2n−2k*cn | |||||||||
| 2n | n−k |
| (−1)k | n |
| ||||||||||
y1(x) = ∑k=0floor(n/2)( | * | * | *2n−2k*xn−2kcn) | |||||||||
| 2n | n−k |
| (−1)k | n |
| ||||||||||
cn(∑k=0floor(n/2)( | * | * | *2n−2k*xn−2k)) | |||||||||
| 2n | n−k |
| (−1)k | n |
| ||||||||||
y1(x) = cn(∑k=0floor(n/2)( | * | * | *(2x)n−2k)) | |||||||||
| 2n | n−k |
| (−1)k | n |
| ||||||||||
cn(∑k=0floor(n/2) | * | * | ) = 1 | |||||||||
| 22k | n−k |
| (−1)k | n |
| ||||||||||
∑k=0floor(n/2) | * | * | ||||||||||
| 22k | n−k |