| n2+1 | ||
∑ | ||
| n2n |
| (n−1)2 | ||
∑ | ||
| n3n |
| n2 + 1 | n | 1 | ||||
∑ | = ∑ | + ∑ | ||||
| n2n | 2n | n2n |
| n | ||
(1) ∑ | = 2 ← znany i lubiany arytmetyczno−geometryczny szereg ![]() | |
| 2n |
| xn | ||
(2) niech F(x) = ∑ | , wowczas: | |
| n |
| xn | xn | 1 | ||||
F'(x) = (∑ | )' = ∑( | )' = ∑xn−1 = | , no to dalej mamy: | |||
| n | n | 1 − x |
| dt | ||
F(x) = 0 ∫ x | = [−ln|1 − t|]0x = −ln|1 − x|. | |
| 1 − t |
| 1 | 1 |
| 1 | ||||||||||||||
teraz kładąc x = | mamy: F( | ) = ∑ | = ∑ | = ln(2) | |||||||||||||
| 2 | 2 | n | n2n |
| n2 + 1 | n | 1 | ||||
stąd szukana suma ∑ | = ∑ | + ∑ | = 2 + ln(2) ![]() | |||
| n2n | 2n | n2n |