n2+1 | ||
∑ | ||
n2n |
(n−1)2 | ||
∑ | ||
n3n |
n2 + 1 | n | 1 | ||||
∑ | = ∑ | + ∑ | ||||
n2n | 2n | n2n |
n | ||
(1) ∑ | = 2 ← znany i lubiany arytmetyczno−geometryczny szereg | |
2n |
xn | ||
(2) niech F(x) = ∑ | , wowczas: | |
n |
xn | xn | 1 | ||||
F'(x) = (∑ | )' = ∑( | )' = ∑xn−1 = | , no to dalej mamy: | |||
n | n | 1 − x |
dt | ||
F(x) = 0 ∫ x | = [−ln|1 − t|]0x = −ln|1 − x|. | |
1 − t |
1 | 1 |
| 1 | ||||||||||||||
teraz kładąc x = | mamy: F( | ) = ∑ | = ∑ | = ln(2) | |||||||||||||
2 | 2 | n | n2n |
n2 + 1 | n | 1 | ||||
stąd szukana suma ∑ | = ∑ | + ∑ | = 2 + ln(2) | |||
n2n | 2n | n2n |