π | ||
a) 2sin( | −x}≥√3 | |
3 |
3 | ||
b) cosx+sinx≥√ | ||
2 |
1 | ||
c) ctgx − | <0 | |
ctgx |
1 | ||
c) ctgx− | <0 dla sinx≠0 | |
ctgx |
3 | ||
b) cosx+sinx≥√ | ( 3 i 2 jest pod pierwiastkiem tak? | |
2 |
π | ||
cosx+sinx= √2sin( | +x) | |
4 |
π | ||
cosx+sinx=√2cos( | −x) | |
4 |
π | ||
a) sin | −x)≥U{√3{2}} | |
3 |
π | π | |||
sin( | −x)≥ sin | |||
3 | 3 |
π | π | ||
−x≥ | +2kπ i k∊Z | ||
3 | 3 |