| π | ||
a) 2sin( | −x}≥√3 | |
| 3 |
| 3 | ||
b) cosx+sinx≥√ | ||
| 2 |
| 1 | ||
c) ctgx − | <0 | |
| ctgx |
| 1 | ||
c) ctgx− | <0 dla sinx≠0 | |
| ctgx |
| 3 | ||
b) cosx+sinx≥√ | ( 3 i 2 jest pod pierwiastkiem tak? | |
| 2 |
| π | ||
cosx+sinx= √2sin( | +x) | |
| 4 |
| π | ||
cosx+sinx=√2cos( | −x) | |
| 4 |
| π | ||
a) sin | −x)≥U{√3{2}} | |
| 3 |
| π | π | |||
sin( | −x)≥ sin | |||
| 3 | 3 |
| π | π | ||
−x≥ | +2kπ i k∊Z | ||
| 3 | 3 |