sin(2x+y) | sin y | ||
−2cos(x+y)= | i sin(x)≠0 | ||
sin x | sin x |
sin(2x+y)−2cos(x+y)*sin(x) | sin y | ||
= | |||
sinx | sin x |
sin2x+y | sin(−y) | |||
2*sin(x)*cos(x+y)= 2[ | + | ]=2*[sin(x+y/2) −sin(y/2)] | ||
2 | 2 |
sin2x*cosy+cos2x*siny −2sinx(cosx*cosy−sinx*siny | ||
L= | = | |
sinx |
cos2x*siny+2sin2xsiny | siny(cos2x+2sin2x | siny | ||||
= | = | = | =P | |||
sinx | sinx | sinx |
1 | ||
2sin(x)*cos(x+y)= 2* | *[(sin(2x+y)+sin(−y)]= sin(2x+y)−sin(y) | |
2 |