| 1 | √3 | π | π | |||||
( | *sin(2x)+ | *cos2(x))2=(sin | *sin(2x)+cos | *cos(2x | ||||
| 2 | 2 | 6 | 6 |
| π | ||
))2=(cos( | −2x))2= | |
| 6 |
| π | ||
cos2( | −2x) | |
| 6 |
| 1 | ||
sin(2x)+√3cos(2x) = 2* | [sin(2x)+√3cos(2x)] = | |
| 2 |
| 1 | 1 | |||
= 2*[ | sin(2x)+ | √3cos(2x)] = | ||
| 2 | 2 |
| 1 | √3 | |||
= 2*[ | sin(2x)+ | cos(2x)] = | ||
| 2 | 2 |
albo jak wolisz zapisujemy:
(sin(2x) + √3cos(2x) )2 = (2 * 1/2sin(2x) + 2* √3/2cos(2x) )2 =
= (2 cos(pi/6 − 2x) )2 = 4cos2(pi/6 − 2x)