matematykaszkolna.pl
matematykaszkolna.pl
poprzednio matematyka.pisz.pl
Matura z Matematyki
Egzamin ósmoklasisty
forum zadankowe
liczby i wyrażenia algebraiczne
logika, zbiory, przedziały
wartość bezwzględna
funkcja i jej własności
funkcja liniowa
funkcja kwadratowa
wielomiany
funkcja wymierna
funkcja wykładnicza
logarytmy
ciągi liczbowe
granica ciągu i funkcji
pochodna funkcji
trygonometria
geometria na płaszczyźnie
geometria analityczna
geometria w przestrzeni
kombinatoryka
prawdopodobieństwo
elementy statystyki
dla studenta
Równanie
Little Mint:
Rozwiąz równanie trygonometryczne (sin(2x)+
√
3
cos(2x))
2
−5=cos(π/6−2x) Autor każe doprowadzic to równanie do postaci 4cos
2
(π/6−2x)−5= cos(π/6−2x) Z lewej strony wyrażenie w nawiasie jesli zapisze
1
√
3
π
π
(
*sin(2x)+
*cos2(x))
2
=(sin
*sin(2x)+cos
*cos(2x
2
2
6
6
π
))
2
=(cos(
−2x))
2
=
6
π
cos
2
(
−2x)
6
Nie bardzo rozumiem skad te 4 z przodu
7 lis 11:55
ite:
powinno by tak:
1
sin(2x)+
√
3
cos(2x) = 2*
[sin(2x)+
√
3
cos(2x)] =
2
1
1
= 2*[
sin(2x)+
√
3
cos(2x)] =
2
2
1
√
3
= 2*[
sin(2x)+
cos(2x)] =
2
2
= 2*[sin(π/6)sin(2x)+cos(π/6)cos(2x)]
7 lis 12:24
wredulus_pospolitus:
x
2
= a*(1/2x)
2
−−> a =
albo jak wolisz zapisujemy: (sin(2x) +
√
3
cos(2x) )
2
= (2 * 1/2sin(2x) + 2*
√
3
/2cos(2x) )
2
= = (2 cos(pi/6 − 2x) )
2
=
4
cos
2
(pi/6 − 2x)
7 lis 12:30
Little Mint:
Dziękuje ślicznie .
7 lis 13:58