| πx | ||
x2−4x−sin | +5=0 | |
| 4 |
| πx | ||
x2−4x+5=sin | ||
| 4 |
x2−4x+5=0
(x−2)2+1=0
q=1 Zw=<1,∞)
| πx | ||
sin | =1 i x2−4x+5=1 dla x=2 bo muszą być rowne | |
| 4 |
| πx | ||
sin | =1 | |
| 4 |
| πx | π | ||
= | +2kπ i k∊C i x=2 | ||
| 4 | 2 |
Tak jak pisze ite.
f(x)=x2−4x+5 = (x−2)2+1 →ZW = [1; +∞]
| π | ||
g(x) = sin | x →ZW = [−1,1] | |
| 4 |
| π | ||
1 = sin | x | |
| 4 |
| π | π | ||
x = | +2πk, gdzie k∊Z | ||
| 4 | 2 |