matematykaszkolna.pl
Udowodnij, że dla dowolnych liczb rzeczywistych a, b, c zachodzi nierówność: Romek: Udowodnij, że dla dowolnych liczb rzeczywistych a, b, c zachodzi nierówność: 2a² + 3b² + 6c² >= (a + b + c)²
28 sie 18:11
wredulus_pospolitus: 2a2 + 3b2 + 6c2 − (a+b+c)2 = a2 + 2b2 + 5c2 − 2ab − 2ac − 2bc = = (−a+b+c)2 + b2 + 4c2 − 4bc = (−a+b+c)2 + (b−2c)2 ≥ 0 c.n.w.
28 sie 21:38