wyznacz wartość parametru a w równaniu wykładniczym
Henrysz: Dla jakich wartości parametru a równanie 2x+2(x−1)+2(x−2)+...=2(2x−1)+a ma tylko jedno
rozwiązanie
11 sie 18:49
rysz:
Lewa strona jest sumą szeregu geometrycznego zbieżnego
1
a1=1x , q=
2
a1
2x
L=S=
⇒ L=
= 2x+1
1−q
1/2
podstawienie 2x=t, t>0
1
2t=
t2+a ⇔ t2−4t+2a=0
2
zatem wyjściowe równanie ma jedno rozwiązanie dla:
1o Δ=0 i t>0
lub
2o Δ>0 i t1*t2= 2a<0 ( t1 i t2 −−różnych znaków)
teraz spróbuj sam dokończyć................