1 | 1 | ||
(∑n=0∞an+4xn+4)+ | (∑n=0∞an+3xn+3)+ | ||
x4 | x3 |
2 | 1 | ||
(∑n=0∞an+2xn+2)+ | (∑n=0∞an+1xn+1)+∑n=0∞anxn | ||
x2 | x |
d | ||
=12x | (∑n=0∞xn) | |
dx |
d | 1 | |||
+x3(∑n=0∞an+1xn+1)+x4(∑n=0∞anxn)=12x5 | ( | ) | ||
dx | (1−x) |
(−1) | ||
+x3(∑n=0∞an+1xn+1−a0)+x4(∑n=0∞anxn) = 12x5 | (−1) | |
(1−x)2 |
12x5 | ||
A(x)(1+x+2x2+x3+x4)= | ||
(1−x)2 |
12x5 | ||
A(x)= | ||
(1−x)2(1+x+2x2+x3+x4) |
12x5 | ||
A(x)= | ||
(1−x)2((1+x+x2 + x2 + x3+x4)) |
12x5 | ||
A(x)= | ||
(1−x)2((1+x+x2)+x2(1+x+x2)) |
12x5 | ||
A(x)= | ||
(1−x)2(1+x2)(1+x+x2) |
π | 8√3 | 2π | π | |||||
an=−6+2(n+1)+6sin( | n)+ | cos( | n+ | ) | ||||
2 | 3 | 3 | 6 |
π | 8√3 | π | ||||
an=2n−4+6sin( | n)+ | cos( | (4n+1)) | |||
2 | 3 | 6 |