| 3 | ||
{logx2+logy2=− | ||
| 2 |
| 1 | 1 | 3 | |||
+ | =− | Wzór na zmiane podstaw logarytmu | |||
| log2x | log2y | 2 |
| log2y+log2x | 3 | ||
=− | |||
| log2x*log2y | 2 |
| −3 | 3 | ||
=− | |||
| log2x*log2y | 2 |
| −3−1 | ||
t1= | =−2 | |
| 2 |
| −3+1 | ||
t2= | = −1 | |
| 2 |
| 1 | ||
log2y=−2 y=2−2= | ||
| 4 |
| 1 | ||
log2y=−1 y= | ||
| 2 |
| 1 | ||
log2x=−3−(−2)=−1 x= | ||
| 2 |
| 1 | ||
log2x=−3−(−1)=−2 x= | ||
| 4 |
| 1 | 1 | 1 | 1 | |||||
Rozwiązaniem tego ukladu sa pary liczb ( | , | ) oraz ( | , | ) | ||||
| 2 | 4 | 4 | 2 |