| 1 | ||
S= | i |q|=|sin2x|<1 | |
| 1−q |
| 1 | ||
tgx+tg2x=2sin2x* | ||
| 1−sin2x |
| 2*2sinxcosx | ||
tgx+tg2x= | ||
| cos2x |
| 4sinx | ||
tgx+tg2x= | ||
| cosx |
| 2tgx | |
−3tgx=0 | |
| 1−tg2x |
| 1 | ||
Z tego mi wyjdzie że tgx=0 lub tg2x= | to do rozwiazania | |
| 3 |
| 1 | ||
tg2x= | ||
| 3 |
| 1 | ||
tgx= | ||
| √3 |
| π | π | |||
tgx=tg | x= | +kπ | ||
| 6 | 6 |
| 1 | ||
tgx=− | ||
| √3 |
| π | ||
tgx=tg− | ||
| 6 |
| π | ||
x=− | +kπ i k∊C | |
| 6 |
| 1 | ||
sinx = 0 ∨ sinx = ± | więc się pokrywają rozwiązania z Twoimi | |
| 2 |
| sin2x | ||
tg2x= | ||
| cos2x |
| 3sinx | ||
3tgx= | ||
| cosx |