matematykaszkolna.pl
środek okręgu play: Znając współrzędne trójkąta : A(0,0) B(6,0) C(3,4) wyznacz równanie okręgu wpisanego w ten trójkąt. Wyznaczyłem wszystkie boki AC=5, BC=5, AB=6 oraz wysokość tego trójkąta równoramiennego a
 3 
następnie ze wzoru S=rp wyznaczyłem r=

. Do napisania równania okręgu jest potrzebny
 2 
jeszcze jego środek, jak go wyznaczyć?
18 kwi 14:14
Mila: rysunek 1) S=(a,b)− środek okręgu wpisanego w Δ leży w punkcie przecięcia dwusiecznych kątów .
 3 
2) Odległość punktu S od boków Δ wynosi r=

( obliczyłeś , nie sprawdzałam)
 2 
 3 
3) CD− dwusieczna kąta C, |SD|=

 2 
 3 
S=(3,

)
 2 
Pisz równanie okręgu
18 kwi 15:16
play: Na podstawie rysunku można co prawda łatwo odczytać, ale bez rysunku skąd od razu wiedziałaś że pierwszą współrzędną będzie x=3 ? bo y to można łatwo wywnioskować z promienia
18 kwi 15:40
. : 1) zauważyłeś że jest to trójkąt równoramienny, związku z tym środek okręgu leży na wysokości. Zwiazku z tym znasz już pierwsza współrzędna dla tegoż przypadku (x=3). 2) wyznaczyłeś promień okręgu, związku z tym wystarczy sprawdzić jaki punkt na wysokości jest oddalony o 'r' od podstawy (co też łatwo w tym konkretnym przypadku zrobić)
18 kwi 16:20
play: Okej dzięki bardzo
18 kwi 16:51