Mariusz:
sin 2x + 2sin
2 x = 2 +
√6 cos x
2sin(x)cos(x) = 2 − 2sin
2(x)+
√6cos(x)
2sin(x)cos(x) =2cos
2(x)+
√6cos(x)
2sin(x)cos(x) − 2cos
2(x)−
√6cos(x)=0
cos(x)(2sin(x) − 2cos(x)−
√6)=0
cos(x) = 0 ⋁
2sin(x) − 2cos(x)−
√6=0
2cos(x) − 2sin(x) = −
√6
1 | | 1 | | √3 | |
| cos(x) − |
| sin(x) = − |
| |
√2 | | √2 | | 2 | |
| π | | √3 | |
cos(x) = 0 ⋁ cos(x+ |
| ) = − |
| |
| 4 | | 2 | |