√2−x−1 | √2−x−1 | 2+√5−x | √2−x+1 | ||||
= | * | * | |||||
2−√5−x | 2−√5−x | 2+√5−x | √2−x+1 |
(2−x)−1 | 2+√5−x | |||
= | * | |||
√2−x+1 | 4−(5−x) |
1−x | 2+√5−x | |||
= | * | |||
√2−x+1 | x−1 |
−(x−1) | 2+√5−x | |||
= | * | |||
√2−x+1 | x−1 |
−(2+√5−x) | ||
= | ||
√2−x+1 |
−(2+2) | ||
zatem wynik to | = −2 | |
1+1 |
−1/(2√2−x) | √5−x | ||
= − | → −U{2}[1} = −2 | ||
1/(2√5−x) | √2−x |