2cos2α − 12sin4α | ||
równość sin3α + cos3α = | ||
2(cosα − sinα) |
2cos2x−sin2x)−1/2*2sin2xcos2x) | ||
P= | = | |
2(cosx−sinx) |
2(cosx−sinx)(cosx+sinx)−2sinxcosx(cos2x−sin2x) | ||
= | = | |
2(cosx−sinx) |
2(cosx−sinx)(cosx+sinx)−2sinxcosx(cos2x−sin2x) | ||
= | = | |
2(cosx−sinx) |
2(cosx−sinx)(cosx+sinx−(cosx+sinx)*sincosx) | ||
= | = | |
2(cosx−sinx) |