1 | 1 | 1 | 1 | |||||
2(x− | )3 = 2(x3 − | x2+ | x − | ) | ||||
6 | 2 | 12 | 216 |
1 | 1 | 1 | ||||
2(x− | )3 = 2x3 − x2 + | x − | ||||
6 | 6 | 108 |
1 | 5 | 1 | 1 | 1 | 5 | 5 | ||||||||
2(x− | )3 + | (x− | )=(2x3 − x2 + | x − | )+( | x − | ) | |||||||
6 | 6 | 6 | 6 | 108 | 6 | 36 |
1 | 5 | 1 | 4 | |||||
2(x− | )3 + | (x− | ) = 2x3 − x2 + x − | |||||
6 | 6 | 6 | 27 |
1 | 5 | 1 | 139 | 4 | 139 | |||||||
2(x− | )3 + | (x− | ) + | = 2x3 − x2 + x − | + | |||||||
6 | 6 | 6 | 27 | 27 | 27 |
1 | 5 | 1 | 139 | |||||
2(x− | )3 + | (x− | ) + | = 2x3 − x2 + x +5 | ||||
6 | 6 | 6 | 27 |
1 | 5 | 1 | 139 | |||||
(x− | )3 + | (x− | ) + | = 0 | ||||
6 | 12 | 6 | 54 |
1 | ||
x − | = y | |
6 |
5 | 139 | |||
y3 + | y + | = 0 | ||
12 | 54 |
5 | 139 | |||
(u + v)3 + | (u + v) + | = 0 | ||
12 | 54 |
5 | 139 | |||
u3 + 3u2v + 3uv2 + v3 + 3* | (u + v) + | = 0 | ||
36 | 54 |
139 | 5 | |||
u3 + v3 + | + 3(u+v)(uv + | ) = 0 | ||
54 | 36 |
139 | ||
u3 + v3 + | = 0 | |
54 |
5 | ||
3(u+v)(uv + | ) = 0 | |
36 |
139 | ||
u3 + v3 = − | ||
54 |
5 | ||
uv = − | ||
36 |
139 | ||
u3 + v3 = − | ||
54 |
125 | ||
u3v3 = − | ||
46656 |
139 | 125 | |||
t2 + | t − | = 0 | ||
54 | 46656 |
139 | 19321 | 77284 | 125 | |||||
(t2 + | t + | )− | − | |||||
54 | 11664 | 46656 | 46656 |
139 | 77409 | |||
(t + | )2 − | =0 | ||
108 | 46656 |
−278−3√8601 | −278+3√8601 | |||
(t − | )(t − | )=0 | ||
216 | 216 |
−278−3√8601 | ||
t1= | ||
216 |
−278+3√8601 | ||
t2 = | ||
216 |
1 | ||
u = | 3√−278+3√8601 | |
6 |
1 | ||
v = | 3√−278+3√8601 | |
6 |
1 | ||
y = | (3√−278+3√8601 + 3√−278+3√8601) | |
6 |
1 | 1 | |||
x − | = | (3√−278+3√8601 + 3√−278+3√8601) | ||
6 | 6 |
1 | ||
x1 = | (1 + 3√−278+3√8601 + 3√−278+3√8601) | |
6 |
1 | ||
(2x3−x2+x+5):(x−( | +u+v)) | |
6 |
1 | 2 | 8 | 1 | 1 | ||||||
(x−( | +u+v))(2x2+(2u+2v− | )x+ | − | u− | v+2u2+4uv+2v2) | |||||
6 | 3 | 9 | 3 | 3 |
1 | ||
u = | 3√−278+3√8601 | |
6 |
1 | ||
v = | 3√−278+3√8601 | |
6 |