tn | ||
Niech E(x,t)=∑n=0∞Hn(x) | ||
n! |
tn | tn | |||
∑n=2∞Hn(x) | =∑n=2∞(2xHn−1(x)−2(n−1)Hn−2(x)) | |||
n! | n! |
tn | tn | |||
∑n=2∞Hn(x) | =2x(∑n=2∞Hn−1(x) | ) | ||
n! | n! |
tn | ||
−2(∑n=2∞(n−1)Hn−2 | ) | |
n! |
tn | tn+1 | |||
∑n=2∞Hn(x) | =2x(∑n=1∞Hn(x) | ) | ||
n! | (n+1)! |
tn+2 | ||
−2(∑n=0∞(n+1)Hn | ) | |
(n+2)! |
tn | tn+1 | |||
∑n=2∞Hn(x) | =2x(∑n=1∞Hn(x) | ) | ||
n! | (n+1)! |
tn+2 | ||
−2(∑n=0∞((n+2)−1)Hn | ) | |
(n+2)! |
tn | tn+1 | |||
∑n=2∞Hn(x) | =2x(∑n=1∞Hn(x) | ) | ||
n! | (n+1)! |
tn+2 | tn+2 | |||
−2(∑n=0∞(n+2)Hn | ) + 2(∑n=0∞Hn | ) | ||
(n+2)! | (n+2)! |
tn | tn+1 | |||
∑n=2∞Hn(x) | =2x(∑n=1∞Hn(x) | ) | ||
n! | (n+1)! |
tn+1 | tn+2 | |||
−2t(∑n=0∞Hn | )+ 2(∑n=0∞Hn | ) | ||
(n+1)! | (n+2)! |
tn | tn+1 | |||
∑n=0∞Hn(x) | − 1 − 2xt = 2x(∑n=0∞Hn(x) | − t) | ||
n! | (n+1)! |
tn+1 | tn+2 | |||
−2t(∑n=0∞Hn | )+ 2(∑n=0∞Hn | ) | ||
(n+1)! | (n+2)! |
tn | tn+1 | |||
∑n=0∞Hn(x) | − 1 − 2xt = 2x(∑n=0∞Hn(x) | ) − 2xt | ||
n! | (n+1)! |
tn+1 | tn+2 | |||
−2t(∑n=0∞Hn | )+ 2(∑n=0∞Hn | ) | ||
(n+1)! | (n+2)! |
tn | tn+1 | |||
∑n=0∞Hn(x) | − 1 = (2x−2t)(∑n=0∞Hn(x) | ) | ||
n! | (n+1)! |
tn+2 | ||
+2(∑n=0∞Hn | ) | |
(n+2)! |
tn | tn+1 | |||
∑n=0∞Hn(x) | + 2(t − x)(∑n=0∞Hn(x) | ) | ||
n! | (n+1)! |
tn+2 | ||
−2(∑n=0∞Hn | ) = 1 | |
(n+2)! |
tn+2 | ||
y(t) = ∑n=0∞Hn | ||
(n+2)! |
(n+2)tn+1 | ||
y'(t) = ∑n=0∞Hn | ||
(n+2)! |
tn+1 | ||
y'(t) = ∑n=0∞Hn | ||
(n+1)! |
(n+1)tn | ||
y''(t) = ∑n=0∞Hn | ||
(n+1)! |
tn | ||
y''(t) = ∑n=0∞Hn | ||
n! |
u'(t) | t2−2xt+x2+1 | ||
= −2 | |||
u(t) | t−x |
du | t2−2xt+x2+1 | ||
= −2 | dt | ||
u | t−x |
du | (t−x)2+1 | ||
= −2 | dt | ||
u | t−x |
2 | ||
ln|u| = ∫−2(t−x) − | dt | |
t−x |
1 | ||
u(t) = C(t) | e−(t−x)2 | |
(t−x)2 |
−2 | 2 | ||
e−(t−x)2− | e−(t−x)2 | ||
(t−x)3 | (t−x) |
1+t2+2tx+x2 | ||
−2 | e−(t−x)2 | |
(t−x)3 |
1 | 1+t2+2tx+x2 | |||
(t − x)(C'(t) | e−(t−x)2−2 | e−(t−x)2C(t)) | ||
(t−x)2 | (t−x)3 |
1 | ||
+2(t2−2xt+x2+1)C(t) | e−(t−x)2 = 1 | |
(t−x)2 |
1 | 1+t2+2tx+x2 | |||
C'(t) | e−(t−x)2−2 | e−(t−x)2C(t) | ||
(t−x) | (t−x)2 |
1 | ||
+2(t2−2xt+x2+1)C(t) | e−(t−x)2 = 1 | |
(t−x)2 |
1 | ||
C(t) = | e(t−x)2+C1 | |
2 |
1 | 1 | |||
u(t) = ( | e(t−x)2+C1) | e−(t−x)2 | ||
2 | (t−x)2 |
1 | 1 | 1 | |||
u(t) = | +C1 | e−(t−x)2 | |||
2 | (t−x)2 | (t−x)2 |
1 | 1 | 1 | |||
2( | +C1 | e−(t−x)2) | |||
2 | (t−x)2 | (t−x)2 |
1 | 2 | 2 | |||
+(t − x)(− | +C1(− | e−(t−x)2− | |||
2 | (t−x)3 | (t−x)3 |
2(t−x) | |
)e−(t−x)2) | |
(t−x)2 |
1 | 1 | 1 | |||
+ 2C1 | e−(t−x)2 − | ||||
(t−x)2 | (t−x)2 | (t−x)2 |
1 | ||
−2C1 | e−(t−x)2 −2C1e−(t−x)2 | |
(t−x)3 |
1 | ||
C1=− | ex2 | |
2 |
(−1) | ||
y''(x) = −2 | ex2e−(t−x)2 | |
2 |
δ | δ | ||
E(x,t) = | ex2e−(t−x)2 | ||
δt | δt |
δn | δn | ||
ex2e−(t−x)2 = ex2 | e−(t−x)2 | ||
δtn | δtn |
dn | ||
ex2 | e−y2|y=−x | |
dyn |
dn | ||
i twierdzą że to jest równe (−1)nex2 | e−x2 | |
dxn |
dn | ||
Jak policzyć tę n. pochodną funkcji (−1)nex2 | e−x2 | |
dxn |