| x−1 | ||||
∫ | √ | dx | ||
| x+1 |
| x−1 | 4t2 | |||
Korzystam z podstawienia t=√ | i otrzymuje ∫ | i rozkladam na | ||
| x+1 | (1+t2)(1−t2) |
| At+B | C | D | |||
+ | + | , jednak otrzymuje zly wynik po obliczeniu. | |||
| 1+t2 | 1−t | 1+t |
| 1 | x−1 | |||
∫ | √ | |||
| x | x+1 |
| 1 | x−1 | |||
∫ | √ | dx | ||
| x | x+1 |
| x−1 | ||
t2 = | ||
| x+1 |
| x+1−2 | ||
t2 = | ||
| x+1 |
| 2 | ||
t2 = 1 − | ||
| x+1 |
| 2 | ||
2tdt = | dx | |
| (x+1)2 |
| 1 | ||
tdt = | dx | |
| (x+1)2 |
| (1−t2)2 | ||
tdt = | dx | |
| 4 |
| 4t | ||
dx= | dt | |
| (1−t2)2 |
| 2 | ||
1−t2 = | ||
| x+1 |
| 1 | x+1 | ||
= | |||
| 1−t2 | 2 |
| 2 | |
= x+1 | |
| 1−t2 |
| 2 | |
− 1 = x | |
| 1 − t2 |
| 1+t2 | |
= x | |
| 1 − t2 |
| 1 | 1−t2 | ||
= | |||
| x | 1+t2 |
| 1−t2 | 4t | |||
∫ | t | dt | ||
| 1+t2 | (1−t2)2 |
| 4t2 | ||
∫ | dt | |
| (1+t2)(1−t2) |
| At+B | C | D | |||
+ | + | ||||
| 1+t2 | 1−t | 1+t |
| −2 | 1 | 1 | ||||
∫ | dt+∫ | dt+∫ | dt= | |||
| 1+t2 | 1−t | 1+t |
| 1+t | ||
=−2arctan(t)+ln| | |+C | |
| 1−t |