x−1 | ||||
∫ | √ | dx | ||
x+1 |
x−1 | 4t2 | |||
Korzystam z podstawienia t=√ | i otrzymuje ∫ | i rozkladam na | ||
x+1 | (1+t2)(1−t2) |
At+B | C | D | |||
+ | + | , jednak otrzymuje zly wynik po obliczeniu. | |||
1+t2 | 1−t | 1+t |
1 | x−1 | |||
∫ | √ | |||
x | x+1 |
1 | x−1 | |||
∫ | √ | dx | ||
x | x+1 |
x−1 | ||
t2 = | ||
x+1 |
x+1−2 | ||
t2 = | ||
x+1 |
2 | ||
t2 = 1 − | ||
x+1 |
2 | ||
2tdt = | dx | |
(x+1)2 |
1 | ||
tdt = | dx | |
(x+1)2 |
(1−t2)2 | ||
tdt = | dx | |
4 |
4t | ||
dx= | dt | |
(1−t2)2 |
2 | ||
1−t2 = | ||
x+1 |
1 | x+1 | ||
= | |||
1−t2 | 2 |
2 | |
= x+1 | |
1−t2 |
2 | |
− 1 = x | |
1 − t2 |
1+t2 | |
= x | |
1 − t2 |
1 | 1−t2 | ||
= | |||
x | 1+t2 |
1−t2 | 4t | |||
∫ | t | dt | ||
1+t2 | (1−t2)2 |
4t2 | ||
∫ | dt | |
(1+t2)(1−t2) |
At+B | C | D | |||
+ | + | ||||
1+t2 | 1−t | 1+t |
−2 | 1 | 1 | ||||
∫ | dt+∫ | dt+∫ | dt= | |||
1+t2 | 1−t | 1+t |
1+t | ||
=−2arctan(t)+ln| | |+C | |
1−t |