1 | A | B | |||
= | + | −−−> A = 1/2 ; B = −1/2 | |||
2n*(2n+2) | 2n | 2n+2 |
1 | 1 | 1 | ||||
wyjściowa suma = | ( | − | ) = ... | |||
2 | 4 | 102 |
1 | 1 | 1 | 1 | ||||
+ | + | + ... + | = | ||||
2*2 * 2*3 | 2*3 * 2*4 | 2*4 * 2*5 | 2*50 * 2*51 |
1 | 1 | 1 | 1 | 1 | ||||||
= | ( | + | + | + ... + | ) = | |||||
4 | 2*3 | 3*4 | 4*5 | 50*51 |
1 | 1 | |||
= | ∑ | , | ||
4 | k(k+1) |
1 | 1 | 1 | ||||
teraz zauważ, że | = | − | , rozpisz sobie tą sumę, a łatwo zauważysz | |||
k(k+1) | k | k+1 |
1 | ||
∑k=0∞xn= | ||
1−x |
1 | ||
∫(∑k=0∞xn)dx = ∫ | dx | |
1−x |
xn+1 | 1 | |||
∑k=0∞ | =ln( | )+C1 | ||
n+1 | 1−x |
1 | ||
ln( | )+C1=0 | |
1−0 |
xn+1 | 1 | |||
∑k=0∞ | =ln( | ) | ||
n+1 | 1−x |
xn+1 | 1 | |||
∫∑k=0∞ | dx = ∫ln( | )dx | ||
n+1 | 1−x |
xn+2 | ||
∑k=0∞ | = | |
(n+1)(n+2) |
1 | ||
∫ln( | )dx | |
1−x |
1 | ||
t= | ||
1−x |
1 | ||
dt = − | (−1)dx | |
(1−x)2 |
dt | ||
dx= | ||
t2 |
ln(t) | ln(t) | 1 | ||||
∫ | dt = − | +∫ | dt | |||
t2 | t | t2 |
ln(t) | ln(t) | 1 | ||||
∫ | dt = − | − | +C2 | |||
t2 | t | t |
1 | 1 | |||
∫ln( | ) = −(1−x)ln( | )−(1−x)+C2 | ||
1−x | 1−x |
xn+2 | 1 | |||
∑k=0∞ | = (x−1)ln( | )+(x−1)+C2 | ||
(n+1)(n+2) | 1−x |
xn+2 | 1 | |||
∑k=0∞ | = (x−1)ln( | )+x | ||
(n+1)(n+2) | 1−x |
xn |
| ||||||||||||
∑k=0∞ | = | ||||||||||||
(n+1)(n+2) | x2 |
| |||||||||||
A(x)= | |||||||||||
x2(1−x) |
1 | 1 | |||
sn= | (an− | ) | ||
4 | 2 |