| 1 | ||
Kąt x jest ostry i sinx − cosx = | . Oblicz sin2 x − cos2 x | |
| √2 |
(sinx−cosx)2=1/2
sin2x−2sinxcosx+cos2x=1/2
1−2sinxcosx=1/2
2sinxcosx=1/2
sin2x+2sinxcosx+cos2x=1+1/2=3/2
(sinx+cosx)2=3/2
kąt ostry, więc sinx+cosx=√3/2
i wreszcie sin2x−cos2x=(sinx−cosx)(sinx+cosx)=1/√2*√3/√2=√3/2
| π | ||
√2cos(π−(x+ | ))= | |
| 4 |
| 3π | ||
√2cos( | −x) | |
| 4 |
| 1 | 1 | 1 | ||||
cos(x) | −sin{x} | =− | ||||
| √2 | √2 | 2 |
| π | π | |||
cos(x+ | )=π− | |||
| 4 | 3 |
| π | 2π | |||
cos(x+ | )= | |||
| 4 | 3 |
| π | 2π | |||
x+ | = | |||
| 4 | 3 |
| 8π | 3π | |||
x= | − | |||
| 12 | 12 |
| 5π | ||
x= | ||
| 12 |
| 5π | 5π | |||
−cos( | )=cos(π− | ) | ||
| 6 | 6 |
| π | √3 | |||
=cos( | ) = | |||
| 6 | 2 |
| 1 | 3 | |||
(sinx−cosx)2+(sinx+cosx)2=2 ⇒ (sinx+cosx)2= 2− | = | |||
| 2 | 2 |
| √3 | 1 | |||
sinx+cosx = | bo x −− kąt ostry i sinx−cosx= | |||
| √2 | √2 |
| √3 | ||
W= | ||
| 2 |