1 | 23 | |||
Jak przejść do postaci kanonicznej z 2x2−x+3 mi wychodzi 2(x2− | )2+ | |||
4 | 16 |
1 | 23 | |||
y=2(x− | )2+ | |||
4 | 8 |
1 | 3 | 1 | 1 | 3 | ||||||
2*(x2− | + | )=2*[(x− | )2− | + | ]= | |||||
2 | 2 | 4 | 16 | 2 |
1 | 1 | |||
2*(x− | )2− | +3= | ||
4 | 8 |
1 | 7 | |||
=2(x− | )2+2 | |||
4 | 8 |
1 | 1 | 1 | 23 | |||||
xw=p= | , yw=q= f(xw)= | − | +3= | |||||
4 | 8 | 4 | 8 |
1 | 23 | |||
f(x)=2(x− | )2+ | |||
4 | 8 |
1 | 7 | |||
yw= 3− | = 2 | |||
8 | 8 |