| dx | 1 | 1 | ||||
jak policzyć całkę z ∫ | mi wychodzi | ln|x+√x2+ | |+c pod | |||
| √2x2−2x+1 | 2 | 4 |
| 1 | ||
ma być też | ||
| 4 |
| 1 | 1 | 1 | 1 | |||||
2x2−2x+1=2x2−2x+ | + | =(√2x− | )2+ | |||||
| 2 | 2 | √2 | 2 |
| 1 | ||
t=√2x− | ||
| √2 |
| √2t+1 | ||
x= | ||
| 2 |
| dt | ||
dx= | ||
| √2 |
| dt | 1 | |||
∫ | = | ln(√t2+12+t)= | ||
| √2√t2+12 | √2 |
| 1 | 1 | ||
ln(√2x2−2x+1+√2x− | )+C | ||
| √2 | √2 |
| 1 | 1 | |||
2(x− | )2+ | ≠2x2−2x+1 | ||
| 2 | 4 |
| 1 | ||
∫ | dx | |
| √2x2−2x+1 |
| t2−1 | ||
x = | ||
| 2√2t−2 |
| 2t(2√2t−2)−2√2(t2−1) | ||
dx = | dt | |
| (2√2t−2)2 |
| 2√2t2−4t+2√2 | ||
dx = | dt | |
| (2√2t−2)2 |
| 2√2t2−2t−√2(t2−1) | ||
t−√2x = | ||
| 2√2t−2 |
| √2t2−2t+√2 | ||
t−√2x = | ||
| 2√2t−2 |
| 2√2t−2 | 2(√2t2−2t+√2) | ||
∫ | dt | ||
| √2t2−2t+√2 | (2√2t−2)2 |
| 1 | ||
∫ | dt | |
| √2t − 1 |
| √2 | √2 | √2 | |||
∫ | dt = | ln|√2t − 1|+C | |||
| 2 | √2t − 1 | 2 |
| √2 | ||
= | ln|2x−1+√2√2x2−2x+1|+C | |
| 2 |