arcsin2(x) | ||
∫ | dx | |
x3 |
1 | ||
u = arcsin2x ; v' = | ||
x3 |
arcsin2(x) | arcsin2(x) | arcsin(x) | ||||
∫ | dx=− | +∫ | dx | |||
x3 | 2x2 | x2√1−x2 |
1 | ||
u=arcsin(x) , v'= | , no i tutaj całka to na pierwszy rzut oka kojarzy mi się z | |
x2√1−x2 |
arcsin(x) | √1−x2 | 1 | ||||
∫ | dx=arcsin(x)* | −∫ | dx | |||
x2√1−x2 | |x| | |x| |
arcsin2(x) | arcsin2(x) | √1−x2 | ||||
∫ | dx=− | +arcsin(x)* | −ln|x|+C | |||
x3 | 2x2 | x |
arcsin2x | arcsin2x | √1−x2 | ||||
∫ | dx = ∫ | dx | ||||
x3 | √1−x2 | x3 |
1 | ||
du = | dx | |
√1−x2 |
u2cos(u) | ||
∫ | du | |
sin3(u) |
cos(u) | ||
f = u2 dg = | du | |
sin3(u) |
1 | ||
df = 2u du g = − | ||
2sin2(u) |
u2 | u | |||
− | + ∫ | du | ||
2sin2(u) | sin2(u) |
1 | ||
f = u dg = | du | |
sin2(u) |
u2 | u2 | |||
− | − uctg(u) + ∫ ctg(u) = − | − uctg(u) + ln(sin(u)) + C | ||
2sin2(u) | 2sin2(u) |
arcsin2x | arcsin2x | |||
∫ | dx = − | − arcsin(x)ctg(arcsin(x)) + | ||
x3 | 2sin2(arcsin(x)) |
1 | ||
∫ | dx | |
x2√1−x2 |
2t | ||
x= | ||
t2+1 |
2(t2+1)−2t*2t | ||
dx= | dt | |
(t2+1)2 |
−2t2+2 | ||
dx = | dt | |
(t2+1)2 |
−2(t2−1) | ||
dx = | dt | |
(t2+1)2 |
2t2−(t2+1) | ||
√1−x2= | ||
t2+1 |
t2−1 | ||
√1−x2= | ||
t2+1 |
(1+t2)2 | t2+1 | (−2)(t2−1) | ||
∫ | dt | |||
4t2 | (t2−1) | (t2+1)2 |
1 | t2+1 | |||
=− | ∫ | dt | ||
2 | t2 |
1 | 1 | |||
=− | (∫dt + ∫ | dt) | ||
2 | t2 |
1 | 1 | |||
=− | (t− | )+C | ||
2 | t |
1 | t2−1 | ||
=− | +C | ||
2 | t |
t2−1 | ||
=− | +C | |
2t |
t2−1 | t2+1 | |||
=− | * | +C | ||
t2+1 | 2t |
√1−x2 | ||
=− | +C | |
x |
arcsin2(x) | ||
Całkę ∫ | dx | |
x3 |