| arcsin2(x) | ||
∫ | dx | |
| x3 |
| 1 | ||
u = arcsin2x ; v' = | ||
| x3 |
| arcsin2(x) | arcsin2(x) | arcsin(x) | ||||
∫ | dx=− | +∫ | dx | |||
| x3 | 2x2 | x2√1−x2 |
| 1 | ||
u=arcsin(x) , v'= | , no i tutaj całka to na pierwszy rzut oka kojarzy mi się z | |
| x2√1−x2 |
| arcsin(x) | √1−x2 | 1 | ||||
∫ | dx=arcsin(x)* | −∫ | dx | |||
| x2√1−x2 | |x| | |x| |
| arcsin2(x) | arcsin2(x) | √1−x2 | ||||
∫ | dx=− | +arcsin(x)* | −ln|x|+C | |||
| x3 | 2x2 | x |
| arcsin2x | arcsin2x | √1−x2 | ||||
∫ | dx = ∫ | dx | ||||
| x3 | √1−x2 | x3 |
| 1 | ||
du = | dx | |
| √1−x2 |
| u2cos(u) | ||
∫ | du | |
| sin3(u) |
| cos(u) | ||
f = u2 dg = | du | |
| sin3(u) |
| 1 | ||
df = 2u du g = − | ||
| 2sin2(u) |
| u2 | u | |||
− | + ∫ | du | ||
| 2sin2(u) | sin2(u) |
| 1 | ||
f = u dg = | du | |
| sin2(u) |
| u2 | u2 | |||
− | − uctg(u) + ∫ ctg(u) = − | − uctg(u) + ln(sin(u)) + C | ||
| 2sin2(u) | 2sin2(u) |
| arcsin2x | arcsin2x | |||
∫ | dx = − | − arcsin(x)ctg(arcsin(x)) + | ||
| x3 | 2sin2(arcsin(x)) |
| 1 | ||
∫ | dx | |
| x2√1−x2 |
| 2t | ||
x= | ||
| t2+1 |
| 2(t2+1)−2t*2t | ||
dx= | dt | |
| (t2+1)2 |
| −2t2+2 | ||
dx = | dt | |
| (t2+1)2 |
| −2(t2−1) | ||
dx = | dt | |
| (t2+1)2 |
| 2t2−(t2+1) | ||
√1−x2= | ||
| t2+1 |
| t2−1 | ||
√1−x2= | ||
| t2+1 |
| (1+t2)2 | t2+1 | (−2)(t2−1) | ||
∫ | dt | |||
| 4t2 | (t2−1) | (t2+1)2 |
| 1 | t2+1 | |||
=− | ∫ | dt | ||
| 2 | t2 |
| 1 | 1 | |||
=− | (∫dt + ∫ | dt) | ||
| 2 | t2 |
| 1 | 1 | |||
=− | (t− | )+C | ||
| 2 | t |
| 1 | t2−1 | ||
=− | +C | ||
| 2 | t |
| t2−1 | ||
=− | +C | |
| 2t |
| t2−1 | t2+1 | |||
=− | * | +C | ||
| t2+1 | 2t |
| √1−x2 | ||
=− | +C | |
| x |
| arcsin2(x) | ||
Całkę ∫ | dx | |
| x3 |