1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞qnxn) = | ( | ) | |||
dx | dx | 1−qx |
−1 | ||
∑n=0∞nqnxn−1 = | (−q) | |
(1−qx)2 |
q | ||
∑n=1∞nqnxn−1 = | ||
(1−qx)2 |
d | d | ||
(∑n=0∞(n+1)qnxn) = | (U{1}{(1−qx)2) | ||
dx | dx |
−2 | ||
∑n=0∞n(n+1)qnxn−1 = | (−q) | |
(1−qx)3 |
2q | ||
∑n=1∞n(n+1)qnxn−1 = | ||
(1−qx)3 |
2q | ||
∑n=0∞(n+1)(n+2)qn+1xn = | ||
(1−qx)3 |
2q | ||
q(∑n=0∞(n+1)(n+2)qnxn) = | ||
(1−qx)3 |
2 | ||
∑n=0∞(n+1)(n+2)qnxn = | ||
(1−qx)3 |
d | d | 2 | |||
(∑n=0∞(n+1)(n+2)qnxn) = | ( | ) | |||
dx | dx | (1−qx)3 |
(−3) | ||
∑n=0∞n(n+1)(n+2)qnxn−1= 2 * | (−q) | |
(1−qx)4 |
3q | ||
∑n=1∞n(n+1)(n+2)qnxn−1 = 2* | ||
(1−qx)4 |
3q | ||
∑n=0∞(n+1)(n+2)(n+3)qn+1xn = 2* | ||
(1−qx)4 |
3q | ||
q(∑n=0∞(n+1)(n+2)(n+3)qnxn) = 2* | ||
(1−qx)4 |
2*3 | ||
∑n=0∞(n+1)(n+2)(n+3)qnxn = | ||
(1−qx)4 |
k! | ||
∑n=0∞(∏m=1k(n+m))qnxn = | ||
(1−qx)k+1 |
2 | 1 | 1 | |||
−4* | +3* | ||||
(1−x)3 | (1−x)2 | 1−x |
2 | 4(1−x) | 3(1−2x+x2) | |||
− | + | ||||
(1−x)3 | (1−x)3 | (1−x)3 |
2+4x−4+3x2−6x+3 | |
(1−x)3 |
1−2x+3x2 | |
(1−x)3 |
x*(x+1) | ||
A1(x)= | ||
(1−x)3 |
−x | ||
A2(x)= | ||
(1−x)2 |
1 | ||
A3(x)= | ||
1−x |
x*(x+1) | −x | 1 | ||||
F(x)= | + | + | ||||
(1−x)3 | (1−x)2 | 1−x |
3x2−2x+1 | ||
F(x)= | ||
(1−x)3 |